Amenable Groups

Jake Bahr

November 16th, 2020

Jake Bahr Amenable Groups

イロト イヨト イヨト イヨト

Definitions Følner Sequences

► A discrete group *G* is *amenable* if there exists a (left) invariant mean.

Jake Bahr Amenable Groups

イロン イロン イヨン イヨン

Definitions Følner Sequences

Amenable groups a-mean-able

- ► A discrete group *G* is *amenable* if there exists a (left) invariant mean.
- A left invariant mean is a state µ on ℓ[∞](G) which is invariant under left translation, i.e.,

イロン イ団 と イヨン イヨン

Definitions Følner Sequences

Amenable groups a-mean-able

- A discrete group G is amenable if there exists a (left) invariant mean.
- A left invariant mean is a state µ on ℓ[∞](G) which is invariant under left translation, i.e., for all f ∈ ℓ[∞](G) and g ∈ G, µ(f) = µ(L_gf).

Definitions Følner Sequences

Amenable groups a-mean-able

> A discrete group G is amenable if there exists a (left) invariant mean.

> A left invariant mean is a state µ on ℓ∞(G) which is invariant under left translation, i.e., for all f ∈ ℓ∞(G) and g ∈ G, µ(f) = µ(L_gf).
> reminder: µ(1) = 1 and µ is positive

Assume every group is discrete from here on out.

Definitions Følner Sequences

Two remarks

1. Note that we could have chosen right-invariant and we would be considering the same groups.

Definitions Følner Sequences

Two remarks

- 1. Note that we could have chosen right-invariant and we would be considering the same groups.
- 2. We could have equivalently defined G as amenable if there is a left-invariant finitely additive probability measure.

Definitions Følner Sequences

Two remarks

- 1. Note that we could have chosen right-invariant and we would be considering the same groups.
- 2. We could have equivalently defined G as amenable if there is a left-invariant finitely additive probability measure.
 - ▶ given a finitely additive measure *m*, the integral $\int \cdot dm$ is our invariant mean
 - given an invariant mean μ , $m(A) = \mu(\chi_A)$ is our invariant finitely additive probability measure

Definitions Følner Sequences

Quick examples

► Consider any finite group *G*. Then $\frac{1}{|G|} \sum_{g \in G} \delta_g$ is an invariant mean.

イロト イヨト イヨト イヨト

Definitions Følner Sequences

Quick examples

- ► Consider any finite group *G*. Then $\frac{1}{|G|} \sum_{g \in G} \delta_g$ is an invariant mean.
- Extending our definition to locally compact groups, compact groups are amenable. The Haar measure is our left invariant mean (in the sense of measure).

イロン イ団 と イヨン イヨン

Definitions Følner Sequences

Quick examples

- ► Consider any finite group G. Then ¹/_{|G|} ∑_{g∈G} δ_g is an invariant mean.
- Extending our definition to locally compact groups, compact groups are amenable. The Haar measure is our left invariant mean (in the sense of measure).
- $\triangleright \mathbb{Z}^n$ is amenable, and in fact every abelian group is amenable.

Følner Sequences

We say a discrete countable group G has a Følner sequence if it has:

Følner Sequences

We say a discrete countable group G has a Følner sequence if it has: a sequence {F_n}[∞]_{n=1} of finite subsets of G satisfying:

イロト イボト イヨト イヨト

Følner Sequences

We say a discrete countable group G has a Følner sequence if it has: a sequence {F_n}_{n=1}[∞] of finite subsets of G satisfying:
1. F_n ≯ G

イロン イロン イヨン イヨン

Følner Sequences

We say a discrete countable group G has a Følner sequence if it has: a sequence {F_n}[∞]_{n=1} of finite subsets of G satisfying:

2. for every
$$g \in G$$
, we have

$$\frac{|gF_n \, \vartriangle \, F_n|}{|F_n|} \to 0 \text{ as } n \to \infty.$$

where \triangle is the symmetric difference

Følner Sequences

We say a discrete countable group G has a Følner sequence if it has: a sequence {F_n}_{n=1}[∞] of finite subsets of G satisfying:

2. for every
$$g \in G$$
, we have

$$\frac{|gF_n \bigtriangleup F_n|}{|F_n|} \to 0 \text{ as } n \to \infty.$$

where \bigtriangleup is the symmetric difference

Informally, large F_n's don't move much when pushed by any fixed element of G.

Følner Sequences

We say a discrete countable group G has a Følner sequence if it has: a sequence {F_n}_{n=1}[∞] of finite subsets of G satisfying:

2. for every
$$g \in G$$
, we have

$$\frac{|gF_n \bigtriangleup F_n|}{|F_n|} \to 0 \text{ as } n \to \infty.$$

where \bigtriangleup is the symmetric difference

Informally, large F_n's don't move much when pushed by any fixed element of G.

Equivalent to amenability

An informal example

 \mathbb{Z}^n has a Følner sequence given by $F_m = \{(z_1, \ldots, z_m) \mid |z_i| \leq m\}.$

after perturbing this set by any element g ∈ Zⁿ, we see that only F_m's "boundary" gets counted by |gF_m △ F_m|, and the surface area of a box is small relative to the volume for large boxes.

An informal example

 \mathbb{Z}^n has a Følner sequence given by $F_m = \{(z_1, \ldots, z_m) \mid |z_i| \leq m\}.$

after perturbing this set by any element g ∈ Zⁿ, we see that only F_m's "boundary" gets counted by |gF_m △ F_m|, and the surface area of a box is small relative to the volume for large boxes.

or:

An informal example

 \mathbb{Z}^n has a Følner sequence given by $F_m = \{(z_1, \ldots, z_m) \mid |z_i| \leq m\}.$

after perturbing this set by any element g ∈ Zⁿ, we see that only F_m's "boundary" gets counted by |gF_m △ F_m|, and the surface area of a box is small relative to the volume for large boxes.

or:

push a square just a bit: the leftovers are linear but the area is quadratic so the ratio goes to zero

Følner sequence implies amenability Amenable groups have Følner sequences

э

A discrete *countable* group G has a Følner sequence iff it is amemable.

Følner sequence implies amenability Amenable groups have Følner sequences

-

A first attempt at the forward direction

Let's try to show the existence of a left-invariant probability measure $\mu.$

Følner sequence implies amenability Amenable groups have Følner sequences

-

A first attempt at the forward direction

Let's try to show the existence of a left-invariant probability measure $\mu.$

$$\mu(A) \coloneqq \lim \frac{|F_n \cap A|}{|F_n|}.$$

Følner sequence implies amenability Amenable groups have Følner sequences

A first attempt at the forward direction

Let's try to show the existence of a left-invariant probability measure $\mu.$

$$\mu(A) := \lim \frac{|F_n \cap A|}{|F_n|}$$

► Example: consider $F_n = [-n, n]$ a Følner sequence for \mathbb{Z} . This definition yields the asymptotic density of A in \mathbb{Z} .

Følner sequence implies amenability Amenable groups have Følner sequences

A first attempt at the forward direction

Let's try to show the existence of a left-invariant probability measure $\mu.$

$$\mu(A) \coloneqq \lim \frac{|F_n \cap A|}{|F_n|}$$

- ► Example: consider $F_n = [-n, n]$ a Følner sequence for \mathbb{Z} . This definition yields the asymptotic density of A in \mathbb{Z} .
- Problem: does the limit exist (and define something reasonable?)

Følner sequence implies amenability Amenable groups have Følner sequences

イロト イボト イヨト イヨト

If G has a Følner sequence, it is amenable

Let F_n be a Følner sequence for G and define a finitely additive probability measure on G by

$$\mu(A) = \lim_{\omega} \frac{|F_n \cap A|}{|F_n|}$$

where ω is a nonprincipal ultrafilter on \mathbb{N} .

If G has a Følner sequence, it is amenable

Let F_n be a Følner sequence for G and define a finitely additive probability measure on G by

$$\mu(A) = \lim_{\omega} \frac{|F_n \cap A|}{|F_n|}$$

where ω is a nonprincipal ultrafilter on \mathbb{N} .

• $\mu(G) = 1$ because the limit exists and ultralimits agree with limits

If G has a Følner sequence, it is amenable

Let F_n be a Følner sequence for G and define a finitely additive probability measure on G by

$$\mu(A) = \lim_{\omega} \frac{|F_n \cap A|}{|F_n|}$$

where ω is a nonprincipal ultrafilter on \mathbb{N} .

- ▶ µ(G) = 1 because the limit exists and ultralimits agree with limits
- We have left invariance

$$|\mu(gA) - \mu(A)| \leq \frac{1}{|F_n|} ||F_n \cap gA| - |F_n \cap A||$$
$$\leq \frac{1}{|F_n|} |(g^{-1}F_n \bigtriangleup F_n) \cap A| \to 0$$

Jake Bahr

Amenable Groups

Følner sequence implies amenability Amenable groups have Følner sequences

Følner's Theorem

Let's show now that countable discrete amenable groups have Følner sequences. We'll do this in a few steps using an argument of Namioka:

Assume we have a left invariant mean $\mu \in \ell^{\infty}(G)$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Følner's Theorem

Let's show now that countable discrete amenable groups have Følner sequences. We'll do this in a few steps using an argument of Namioka:

Assume we have a left invariant mean $\mu \in \ell^{\infty}(G)$.

1. Given a finite set S and $\varepsilon > 0$, we'll find a *finite mean* that is approximately invariant under left-translation by elements of S.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Følner's Theorem

Let's show now that countable discrete amenable groups have Følner sequences. We'll do this in a few steps using an argument of Namioka:

Assume we have a left invariant mean $\mu \in \ell^{\infty}(G)$.

- 1. Given a finite set S and $\varepsilon > 0$, we'll find a *finite mean* that is approximately invariant under left-translation by elements of S.
- 2. Given a finite set S and $\varepsilon > 0$, we can find a large F such that

$$\frac{|gF \vartriangle F|}{|F|} \le \varepsilon$$

for each $g \in S$

・ロッ ・雪 ・ ・ ヨ ・ ・ ロ ・

Følner's Theorem

Let's show now that countable discrete amenable groups have Følner sequences. We'll do this in a few steps using an argument of Namioka:

Assume we have a left invariant mean $\mu \in \ell^{\infty}(G)$.

- 1. Given a finite set S and $\varepsilon > 0$, we'll find a *finite mean* that is approximately invariant under left-translation by elements of S.
- 2. Given a finite set S and $\varepsilon > 0$, we can find a large F such that

$$\frac{|gF \vartriangle F|}{|F|} \le \varepsilon$$

for each $g \in S$

3. The existence of a Følner sequence follows.

Følner sequence implies amenability Amenable groups have Følner sequences

Følner's Theorem: Step 1

Suppose G is an amenable countable discrete group. Let $\mu \in \ell^{\infty}(G)$ be a left invariant mean. We'd like to show that for all finite sets $S \subseteq G$ and $\varepsilon > 0$, there exists a *finite mean*, i.e., a finitely supported function $\nu : G \to \mathbb{R}^+$ with $\|\nu\|_{\ell^1(G)} = 1$ satisfying:

Følner sequence implies amenability Amenable groups have Følner sequences

Følner's Theorem: Step 1

Suppose G is an amenable countable discrete group. Let $\mu \in \ell^{\infty}(G)$ be a left invariant mean. We'd like to show that for all finite sets $S \subseteq G$ and $\varepsilon > 0$, there exists a *finite mean*, i.e., a finitely supported function $\nu : G \to \mathbb{R}^+$ with $\|\nu\|_{\ell^1(G)} = 1$ satisfying: for all $g \in S$

$$\|\nu - L_g \nu\|_{\ell^1(G)} < \varepsilon$$

Følner sequence implies amenability Amenable groups have Følner sequences

Følner's Theorem: Step 1

Suppose G is an amenable countable discrete group. Let $\mu \in \ell^{\infty}(G)$ be a left invariant mean. We'd like to show that for all finite sets $S \subseteq G$ and $\varepsilon > 0$, there exists a *finite mean*, i.e., a finitely supported function $\nu : G \to \mathbb{R}^+$ with $\|\nu\|_{\ell^1(G)} = 1$ satisfying: for all $g \in S$

$$\|\nu - L_g \nu\|_{\ell^1(G)} < \varepsilon$$

Suppose not. Then there exists $S \subseteq G$ finite and $\varepsilon > 0$ with $\sup_{g \in S} \|\nu - L_g \nu\|_{\ell^1(G)} \ge \varepsilon$ for every finite mean ν .

Følner sequence implies amenability Amenable groups have Følner sequences

э

Følner's Theorem: Step 1

• Set $V = \{ \nu \in \ell^1(G) \mid \nu \text{ is a finite mean} \}.$

Følner sequence implies amenability Amenable groups have Følner sequences

Følner's Theorem: Step 1

• Set $V = \{ \nu \in \ell^1(G) \mid \nu \text{ is a finite mean} \}.$

▶ Taking the norm $\sup_{g \in S} ||f(g, \cdot)||$ for the space $(\ell^1(G))^S$,

Følner sequence implies amenability Amenable groups have Følner sequences

Følner's Theorem: Step 1

• Set $V = \{ \nu \in \ell^1(G) \mid \nu \text{ is a finite mean} \}.$

Taking the norm sup_{g∈S} || f(g, ·) || for the space (ℓ¹(G))^S, note that {(ν − L_gν)_{g∈S} | ν ∈ V} is a convex subset of V^S ⊆ (ℓ¹(G))^S bounded away from zero.

Følner sequence implies amenability Amenable groups have Følner sequences

Følner's Theorem: Step 1

- Set $V = \{ \nu \in \ell^1(G) \mid \nu \text{ is a finite mean} \}.$
- Taking the norm sup_{g∈S} || f(g, ·) || for the space (ℓ¹(G))^S, note that {(ν − L_gν)_{g∈S} | ν ∈ V} is a convex subset of V^S ⊆ (ℓ¹(G))^S bounded away from zero.
- ► Hahn-Banach separation yields a functional \(\alpha\) ∈ ((\(\ell^1(G)\)^S)\)*, with

$$\alpha_{g}(\nu - L_{g}\nu) > 1$$

for all $\nu \in V$ and $g \in S$ where we write α as $(\alpha_g)_{g \in S}$.

Følner sequence implies amenability Amenable groups have Følner sequences

Følner's Theorem: Step 1

Rewriting our previous condition, using the fact that ((ℓ¹(G))^S)^{*} ≃ (ℓ[∞](G))^S, we get for each g ∈ S a function β_g ∈ ℓ[∞](G) satisfying

$$\sum_{x} \beta_{g}(x) \left(\nu(x) - (L_{g}\nu)(x) \right) > 1$$

for all finite means ν .

Følner sequence implies amenability Amenable groups have Følner sequences

イロト イボト イヨト イヨト

Følner's Theorem: Step 1

Rewriting our previous condition, using the fact that ((ℓ¹(G))^S)^{*} ≃ (ℓ[∞](G))^S, we get for each g ∈ S a function β_g ∈ ℓ[∞](G) satisfying

$$\sum_{x} \beta_{g}(x) \left(\nu(x) - (L_{g}\nu)(x) \right) > 1$$

for all finite means ν .

• Let's consider $\nu = \delta_h$ to get

$$\beta_g(h) - (L_{g^{-1}}\beta_g)(h) > 1$$

which holds for every $h \in G$.

Følner sequence implies amenability Amenable groups have Følner sequences

イロト イヨト イヨト イヨト

э

Følner's Theorem: Step 1

For each $g \in S$,

$$\beta_g(h) - (L_{g^{-1}}\beta_g)(h) > 1$$

for all $h \in G$,

Følner sequence implies amenability Amenable groups have Følner sequences

イロト イボト イヨト イヨト

э

Følner's Theorem: Step 1

For each $g \in S$,

$$\beta_g(h) - (L_{g^{-1}}\beta_g)(h) > 1$$

for all $h \in G$,so

$$\mu(\beta_g - L_{g^{-1}}\beta_g) > \mu(1) = 1,$$

a contradiction to left-invariance.

Følner sequence implies amenability Amenable groups have Følner sequences

イロト イボト イヨト イヨト

Følner's Theorem: Step 1

For each $g \in S$,

$$\beta_g(h) - (L_{g^{-1}}\beta_g)(h) > 1$$

for all $h \in G$,so

$$\mu(\beta_g - L_{g^{-1}}\beta_g) > \mu(1) = 1,$$

a contradiction to left-invariance.

Thus given our invariant mean μ , it's true that for all S finite and $\varepsilon > 0$, there's a finite mean ν satisfying $\forall g \in S$,

$$\|\nu - L_g \nu\|_{\ell^1(G)} < \varepsilon$$

Følner sequence implies amenability Amenable groups have Følner sequences

э

Følner's Theorem: Step 2

Goal: for every S finite and $\varepsilon > 0$ there exists F finite satisfying

$$rac{|gF riangle F|}{|F|} \quad orall g \in S.$$

Følner sequence implies amenability Amenable groups have Følner sequences

イロト イボト イヨト イヨト

Følner's Theorem: Step 2

Goal: for every S finite and $\varepsilon > 0$ there exists F finite satisfying

$$rac{|gF riangle F|}{|F|} \quad orall g \in S.$$

Let S be finite and $\varepsilon > 0$. By Step 1, we have a finite mean ν with

$$\|\nu - L_g \nu\|_{\ell^1(G)} \leq \frac{\varepsilon}{|S|}$$

for all $g \in S$.

Følner sequence implies amenability Amenable groups have Følner sequences

Følner's Theorem: Step 2

Since ν is finitely supported, let's take its "layer cake decomposition":

$$\nu = \sum_{i=1}^{n} c_i \chi_{F_i}$$

with $c_i > 0$ and $F_1 \supseteq \cdots \supseteq F_n$.

Følner sequence implies amenability Amenable groups have Følner sequences

Følner's Theorem: Step 2

Since ν is finitely supported, let's take its "layer cake decomposition":

$$\nu = \sum_{i=1}^{n} c_i \chi_{F_i}$$

with $c_i > 0$ and $F_1 \supseteq \cdots \supseteq F_n$. Note that $\sum c_i |F_i| = 1$ since ν is a finite mean.

Følner sequence implies amenability Amenable groups have Følner sequences

-

Følner's Theorem: Step 2

Note that $|\nu(g) - (L_h\nu)(g)| \ge c_i$ for $g \in hF_i \bigtriangleup F_i$. Think of hopping up or down a layer of the cake.

Følner sequence implies amenability Amenable groups have Følner sequences

Følner's Theorem: Step 2

Note that $|\nu(g) - (L_h\nu)(g)| \ge c_i$ for $g \in hF_i \bigtriangleup F_i$. Think of hopping up or down a layer of the cake. Integrating the above,

$$\sum_{i=1}^{n} c_i |hF_i \vartriangle F_i| \le ||\nu - L_h \nu||_{\ell^1(G)} \le \frac{\varepsilon}{|S|} \sum_{i=1}^{n} c_i |F_i|$$

using $\sum c_i |F_i| = 1$.

Følner sequence implies amenability Amenable groups have Følner sequences

э

Følner's Theorem: Step 2

Summing in $h \in S$,

$$\sum_{i=1}^{n} \sum_{h \in S} c_i |hF_i \vartriangle F_i| \le \varepsilon \sum_{i=1}^{n} c_i |F_i|$$

Følner sequence implies amenability Amenable groups have Følner sequences

-

Følner's Theorem: Step 2

Summing in $h \in S$,

$$\sum_{i=1}^{n} \sum_{h \in S} c_i |hF_i \vartriangle F_i| \le \varepsilon \sum_{i=1}^{n} c_i |F_i|$$

By pigeonhole, there must exist i with

$$\sum_{h\in S} \frac{|hF_i \bigtriangleup F_i|}{|F_i|} \le \varepsilon$$

This F_i is our desired set.

Følner sequence implies amenability Amenable groups have Følner sequences

Følner's Theorem: Step 3

Now we know that for all S and $\varepsilon > 0$ there exists F satisfying $|gF \bigtriangleup F|/|F| \le \varepsilon$ for all $g \in S$, we'll find a Følner sequence. For each $\varepsilon = 1/n$ select F_n satisfying the above.

Quotients of amenable groups are amenable

Let H=G/N be a quotient of an amenable discrete group. Given μ on G, define ν on H by

 $\nu(A) = \mu(AN)$

Suppose $N \leq G$ is amenable and G/N is amenable. Let μ and ν be measures on N and G/N respectively.

Suppose $N \trianglelefteq G$ is amenable and G/N is amenable. Let μ and ν be measures on N and G/N respectively.

• Define $f_A : G \to \mathbb{R}$ via $f_A(g) = \mu(N \cap g^{-1}A)$ for $A \subseteq G$.

Suppose $N \trianglelefteq G$ is amenable and G/N is amenable. Let μ and ν be measures on N and G/N respectively.

- Define $f_A : G \to \mathbb{R}$ via $f_A(g) = \mu(N \cap g^{-1}A)$ for $A \subseteq G$.
- ▶ Pull back to $f_A : G/N \to \mathbb{R}$, noting μ is N invariant.

Suppose $N \trianglelefteq G$ is amenable and G/N is amenable. Let μ and ν be measures on N and G/N respectively.

- Define $f_A : G \to \mathbb{R}$ via $f_A(g) = \mu(N \cap g^{-1}A)$ for $A \subseteq G$.
- ▶ Pull back to $f_A : G/N \to \mathbb{R}$, noting μ is N invariant.
- Define $\psi(A) = \int f_A(x) d\nu(x)$.

Quotients Subgroups

Subgroups of amenable groups are amenable

Let H be a subgroup of G (discrete).

Jake Bahr Amenable Groups

Quotients Subgroups

Subgroups of amenable groups are amenable

Let H be a subgroup of G (discrete). By the axiom of choice, let S contain precisely one element of every right coset of H.

Quotients Subgroups

Subgroups of amenable groups are amenable

Let *H* be a subgroup of *G* (discrete). By the axiom of choice, let *S* contain precisely one element of every right coset of *H*. Given a probability measure μ on *G*, define ν on *H* via $\nu(A) = \mu(AS)$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Abelian groups Free groups

Discrete abelian groups are amenable

This fact follows from a few things:

- Direct limits of amenable groups are amenable
- Direct sums of amenable groups are amenable

- 4 同 ト 4 目 ト 4 目 ト

Abelian groups Free groups

Free groups (except \mathbb{Z}) are not amenable

- ▶ Picture the Cayley graph of F₂. Any large set has very large "boundary", so informally we should be concerned about the existence of a Følner sequence.
- ► Since subgroups of amenable groups are amenable, it suffices to prove that 𝔽₂ is not amenable.

< ロ > < 同 > < 回 > < 回 > .

A Banach-Tarski Trick

Let $\mathbb{F}_2 = \langle a, b \rangle$ and denote by W(x) the words beginning with x.

Let $\mathbb{F}_2 = \langle a, b \rangle$ and denote by W(x) the words beginning with x. We can decompose

$$egin{array}{ll} \mathbb{F}_2 = W(a) \sqcup a W(a^{-1}) \ = W(b) \sqcup b W(b^{-1}) \end{array}$$

Let $\mathbb{F}_2 = \langle a, b \rangle$ and denote by W(x) the words beginning with x. We can decompose

$$egin{array}{ll} \mathbb{F}_2 &= W(a) \sqcup a W(a^{-1}) \ &= W(b) \sqcup b W(b^{-1}) \end{array}$$

If \mathbb{F}_2 had a left-invariant probability measure:

Let $\mathbb{F}_2 = \langle a, b \rangle$ and denote by W(x) the words beginning with x. We can decompose

$$\mathbb{F}_2 = W(a) \sqcup aW(a^{-1}) \ = W(b) \sqcup bW(b^{-1})$$

If \mathbb{F}_2 had a left-invariant probability measure:

1.
$$\mu(W(a)) + \mu(W(a^{-1})) = 1$$
, and so
 $\mu(W(b)) = \mu(W(b^{-1})) = 0$.

Let $\mathbb{F}_2 = \langle a, b \rangle$ and denote by W(x) the words beginning with x. We can decompose

$$\mathbb{F}_2 = W(a) \sqcup aW(a^{-1}) \ = W(b) \sqcup bW(b^{-1})$$

If \mathbb{F}_2 had a left-invariant probability measure:

1.
$$\mu(W(a)) + \mu(W(a^{-1})) = 1$$
, and so
 $\mu(W(b)) = \mu(W(b^{-1})) = 0.$

2. Similarly for *b*.

<ロト < 同ト < 三ト < 三ト

Sources

Sources

Mostly

- http://reh.math.uni-duesseldorf.de/~garrido/ amenable.pdf
- https://terrytao.wordpress.com/2009/04/14/ some-notes-on-amenability/

イロト イボト イヨト イヨト