
Basics
Følner’s Theorem

Properties
Examples
Sources

Amenable Groups

Jake Bahr

November 16th, 2020

Jake Bahr Amenable Groups



Basics
Følner’s Theorem

Properties
Examples
Sources

Definitions
Følner Sequences

Amenable groups
a-mean-able

I A discrete group G is amenable if there exists a (left) invariant
mean.

I A left invariant mean is a state µ on `∞(G ) which is invariant
under left translation, i.e., for all f ∈ `∞(G ) and g ∈ G ,
µ(f ) = µ(Lg f ).
I reminder: µ(1) = 1 and µ is positive

I Assume every group is discrete from here on out.
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Two remarks

1. Note that we could have chosen right-invariant and we would
be considering the same groups.

2. We could have equivalently defined G as amenable if there is a
left-invariant finitely additive probability measure.
I given a finitely additive measure m, the integral

∫
· dm is our

invariant mean
I given an invariant mean µ, m(A) = µ(χA) is our invariant

finitely additive probability measure
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Quick examples

I Consider any finite group G . Then 1
|G |
∑

g∈G δg is an invariant
mean.

I Extending our definition to locally compact groups, compact
groups are amenable. The Haar measure is our left invariant
mean (in the sense of measure).

I Zn is amenable, and in fact every abelian group is amenable.
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Følner Sequences

I We say a discrete countable group G has a Følner sequence if
it has:

a sequence {Fn}∞n=1 of finite subsets of G satisfying:
1. Fn ↗ G
2. for every g ∈ G , we have

|gFn M Fn|
|Fn|

→ 0 as n→∞.

where M is the symmetric difference

I Informally, large Fn’s don’t move much when pushed by any
fixed element of G .

I Equivalent to amenability
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An informal example

Zn has a Følner sequence given by Fm = {(z1, . . . , zm) | |zi | ≤ m}.
I after perturbing this set by any element g ∈ Zn, we see that

only Fm’s "boundary" gets counted by |gFm M Fm|, and the
surface area of a box is small relative to the volume for large
boxes.

or:
I push a square just a bit: the leftovers are linear but the area is

quadratic so the ratio goes to zero
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Følner’s Theorem

A discrete countable group G has a Følner sequence iff it is
amemable.
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A first attempt at the forward direction

Let’s try to show the existence of a left-invariant probability
measure µ.

µ(A) := lim
|Fn ∩ A|
|Fn|

.

I Example: consider Fn = [−n, n] a Følner sequence for Z. This
definition yields the asymptotic density of A in Z.

I Problem: does the limit exist (and define something
reasonable?)
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If G has a Følner sequence, it is amenable

I Let Fn be a Følner sequence for G and define a finitely
additive probability measure on G by

µ(A) = lim
ω

|Fn ∩ A|
|Fn|

where ω is a nonprincipal ultrafilter on N.

I µ(G ) = 1 because the limit exists and ultralimits agree with
limits

I We have left invariance

|µ(gA)− µ(A)| ≤ 1
|Fn|
||Fn ∩ gA| − |Fn ∩ A||

≤ 1
|Fn|

∣∣(g−1Fn M Fn) ∩ A
∣∣→ 0
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Følner’s Theorem

Let’s show now that countable discrete amenable groups have
Følner sequences. We’ll do this in a few steps using an argument of
Namioka:
Assume we have a left invariant mean µ ∈ `∞(G ).

1. Given a finite set S and ε > 0, we’ll find a finite mean that is
approximately invariant under left-translation by elements of S .

2. Given a finite set S and ε > 0, we can find a large F such that

|gF M F |
|F |

≤ ε

for each g ∈ S

3. The existence of a Følner sequence follows.
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Følner’s Theorem: Step 1

Suppose G is an amenable countable discrete group. Let
µ ∈ `∞(G ) be a left invariant mean. We’d like to show that for all
finite sets S ⊆ G and ε > 0, there exists a finite mean, i.e., a
finitely supported function ν : G → R+ with ‖ν‖`1(G) = 1
satisfying:

for all g ∈ S

‖ν − Lgν‖`1(G) < ε

Suppose not. Then there exists S ⊆ G finite and ε > 0 with
supg∈S‖ν − Lgν‖`1(G) ≥ ε for every finite mean ν.
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Følner’s Theorem: Step 1

I Set V = {ν ∈ `1(G ) | ν is a finite mean}.

I Taking the norm supg∈S‖f (g , ·)‖ for the space (`1(G ))S , note
that {(ν − Lgν)g∈S | ν ∈ V } is a convex subset of
V S ⊆ (`1(G ))S bounded away from zero.

I Hahn-Banach separation yields a functional α ∈ ((`1(G ))S)∗,
with

αg (ν − Lgν) > 1

for all ν ∈ V and g ∈ S where we write α as (αg )g∈S .
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Følner’s Theorem: Step 1

I Rewriting our previous condition, using the fact that
((`1(G ))S)∗ ' (`∞(G ))S , we get for each g ∈ S a function
βg ∈ `∞(G ) satisfying∑

x

βg (x) (ν(x)− (Lgν)(x)) > 1

for all finite means ν.

I Let’s consider ν = δh to get

βg (h)− (Lg−1βg )(h) > 1

which holds for every h ∈ G .
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Følner’s Theorem: Step 1

For each g ∈ S ,

βg (h)− (Lg−1βg )(h) > 1

for all h ∈ G ,

so

µ(βg − Lg−1βg ) > µ(1) = 1,

a contradiction to left-invariance.
Thus given our invariant mean µ, it’s true that for all S finite and
ε > 0, there’s a finite mean ν satisfying ∀g ∈ S ,

‖ν − Lgν‖`1(G) < ε
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Følner’s Theorem: Step 2

Goal: for every S finite and ε > 0 there exists F finite satisfying

|gF M F |
|F |

∀g ∈ S .

Let S be finite and ε > 0. By Step 1, we have a finite mean ν with

‖ν − Lgν‖`1(G) ≤
ε

|S |

for all g ∈ S .
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Følner’s Theorem: Step 2

Since ν is finitely supported, let’s take its "layer cake
decomposition":

ν =
n∑

i=1

ciχFi

with ci > 0 and F1 ⊇ · · · ⊇ Fn.

Note that
∑

ci |Fi | = 1 since ν is a
finite mean.
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Følner’s Theorem: Step 2

Note that |ν(g)− (Lhν)(g)| ≥ ci for g ∈ hFi M Fi . Think of
hopping up or down a layer of the cake.

Integrating the above,

n∑
i=1

ci |hFi M Fi | ≤ ‖ν − Lhν‖`1(G) ≤
ε

|S |

n∑
i=1

ci |Fi |

using
∑

ci |Fi | = 1.
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Følner’s Theorem: Step 2

Summing in h ∈ S ,

n∑
i=1

∑
h∈S

ci |hFi M Fi | ≤ ε
n∑

i=1

ci |Fi |

By pigeonhole, there must exist i with∑
h∈S

|hFi M Fi |
|Fi |

≤ ε

This Fi is our desired set.
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Følner’s Theorem: Step 3

Now we know that for all S and ε > 0 there exists F satisfying
|gF M F |/|F | ≤ ε for all g ∈ S , we’ll find a Følner sequence.
For each ε = 1/n select Fn satisfying the above.
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Quotients of amenable groups are amenable

Let H = G/N be a quotient of an amenable discrete group. Given
µ on G , define ν on H by

ν(A) = µ(AN)
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If a normal subgroup and the quotient are amenable, so is
the original

Suppose N E G is amenable and G/N is amenable. Let µ and ν be
measures on N and G/N respectively.

I Define fA : G → R via fA(g) = µ(N ∩ g−1A) for A ⊆ G .
I Pull back to fA : G/N → R, noting µ is N invariant.
I Define ψ(A) =

∫
fA(x) dν(x).
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Quotients
Subgroups

Subgroups of amenable groups are amenable

Let H be a subgroup of G (discrete).

By the axiom of choice, let S
contain precisely one element of every right coset of H. Given a
probability measure µ on G , define ν on H via ν(A) = µ(AS).
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Abelian groups
Free groups

Discrete abelian groups are amenable

This fact follows from a few things:
I Direct limits of amenable groups are amenable
I Direct sums of amenable groups are amenable
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Free groups (except Z) are not amenable

I Picture the Cayley graph of F2. Any large set has very large
"boundary", so informally we should be concerned about the
existence of a Følner sequence.

I Since subgroups of amenable groups are amenable, it suffices
to prove that F2 is not amenable.
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Abelian groups
Free groups

A Banach-Tarski Trick

Let F2 = 〈a, b〉 and denote by W (x) the words beginning with x .

We can decompose

F2 = W (a) t aW (a−1)

= W (b) t bW (b−1)

If F2 had a left-invariant probability measure:
1. µ(W (a)) + µ(W (a−1)) = 1, and so
µ(W (b)) = µ(W (b−1)) = 0.

2. Similarly for b.
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Sources

Mostly
I http://reh.math.uni-duesseldorf.de/~garrido/

amenable.pdf
I https://terrytao.wordpress.com/2009/04/14/

some-notes-on-amenability/
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