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1 Coordinates Basics

1.1 What is a basis?

Let 𝑉 be a vector space over the field 𝐹 .

Definition 1.1. The vectors {𝑣1, . . . , 𝑣𝑛} are said to be linearly independent if for
any 𝑐1, . . . , 𝑐𝑛 ∈ 𝐹 ,

𝑛∑︁
𝑖=1

𝑐𝑖𝑣𝑖 = 0 =⇒ 𝑐1 = 𝑐2 = · · · = 0

This means the only way of "reaching" 0 using a linear combination of
𝑣1, . . . , 𝑣𝑛 is by taking exactly zero of every one of those vectors. It rules out
things like 𝑣1 − 2𝑣2 + 4𝑣3 + 0𝑣4 = 0.

Very informally, linear independence is a way of saying we don’t have "too
many vectors" in a set.

What about the set of vectors we can "reach" from 𝑣1, . . . , 𝑣𝑛?

Definition 1.2. The span of the set of vectors {𝑣1, . . . , 𝑣𝑛} is the set of all linear
combinations of 𝑣1, . . . , 𝑣𝑛, given as follows:

span({𝑣1, . . . , 𝑣𝑛}) =
{

𝑛∑︁
𝑖=1

𝑐𝑖𝑣𝑖 | 𝑐1, . . . , 𝑐𝑛 ∈ 𝐹

}
The span of a set of vectors is the set of all linear combinations of those

vectors. So the span of 𝑣1, 𝑣2 is a set that includes things like 𝑣1 + 𝑣2, 𝑣1 − 2𝑣2,
0𝑣1 − 7𝑣2, and so on.

Let’s put these concepts together!

Definition 1.3. If {𝑣1, . . . , 𝑣𝑛} are linearly independent, and span({𝑣1, . . . , 𝑣𝑛}) =
𝑊 for some subspace𝑊 ⊆ 𝑉 , then we say 𝛽 = {𝑣1, . . . , 𝑣𝑛} is a basis for𝑊 .

The number of vectors in a basis is independent of what basis you pick! This
is a little surprising perhaps. It means any basis of ℝ2 has exactly two vectors in
it, since we know {𝑒1, 𝑒2} is a basis for ℝ2 (and it has two vectors in it).

1.2 What are coordinates?

Suppose 𝑥 ∈ 𝑉 and 𝛽 = {𝑣1, . . . , 𝑣𝑛} is a basis for 𝑉 .
Since span(𝛽) = 𝑉 3 𝑥 , we know that 𝑥 =

∑𝑛
𝑖=1 𝑐𝑖𝑣𝑖 for some 𝑐1, . . . , 𝑐𝑛 ∈ 𝐹 .

But maybe there are lots of scalars that work instead of just 𝑐1, . . . , 𝑐𝑛, right?
Actually no! So let’s make a definition:
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Definition 1.4. Let 𝑥 ∈ 𝑉 and 𝛽 = {𝑣1, . . . , 𝑣𝑛} be a basis for 𝑉 . Then the
coordinate vector of 𝑥 with respect to the basis 𝛽, denoted [𝑥]𝛽 is given by

[𝑥]𝛽 = (𝑐1, . . . , 𝑐𝑛)

where 𝑐1, . . . , 𝑐𝑛 are the unique scalars in 𝐹 satisfying

𝑥 = 𝑐1𝑣1 + · · · + 𝑐𝑛𝑣𝑛

Ok so why is there only one set of scalars that works there?

Proposition 1.5. Suppose 𝑥 ∈ 𝑉 with 𝛽 = {𝑣1, . . . , 𝑣𝑛} a basis for 𝑉 and

𝑥 =
∑︁

𝑐𝑖𝑣𝑖 =
∑︁

𝑑𝑖𝑣𝑖

for scalars 𝑐1, . . . , 𝑐𝑛, 𝑑1, . . . , 𝑑𝑛 ∈ 𝐹 .
Then 𝑐𝑖 = 𝑑𝑖 for each 1 ≤ 𝑖 ≤ 𝑛! That is, the set of scalars are unique.

Proof. If 𝑥 =
∑
𝑐𝑖𝑣𝑖 =

∑
𝑑𝑖𝑣𝑖 , then we can write zero as follows:

0 = 𝑥 − 𝑥 =
∑︁

(𝑐𝑖 − 𝑑𝑖)𝑣𝑖

but since {𝑣1, . . . , 𝑣𝑛} is a linearly independent set of vectors, 𝑐𝑖 −𝑑𝑖 = 0 for each
𝑖, and thus 𝑐1 = 𝑑1, 𝑐2 = 𝑑2, . . . , 𝑐𝑛 = 𝑑𝑛 as we wanted to show! �

So when I defined coordinates, it was reasonable to say "the unique scalars
𝑐1, . . . , 𝑐𝑛", as they are in fact unique!

Now I’d like to mention a few ways I think of [𝑥]𝛽

• as instructions for recreating 𝑥 if all you have access to is 𝛽

• as a "translation" of 𝑥 into the "language" of 𝛽

– this is incredibly informal, but helps me keep track of change of
coordinate matrices

• if 𝛽 = {𝑣1, 𝑣2} is a basis forℝ2 and I use 𝑣1 and 𝑣2 to create a skewed looking
grid system on the plane (like the way I can use 𝑒1 and 𝑒2 to draw grid
lines normally), then [𝑥]𝛽 is the readout using the weird new grid system of
where 𝑥 is
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– as an example, look at 𝛽 = {(1, 1), (0, 1)}. Mark the 𝑦-axis at

. . . , (0,−1), (0, 0), (0, 1), (0, 2), (0, 3), . . .

and from each of those dots, draw lines in the (1, 1) direction. Then
mark off points for each (1, 1) you travel along these lines and com-
plete the whole grid.
Then if I have a vector like (3, 5) ∈ ℝ2, I can see where these grid
lines intersect it and notice that it’s 3 steps in the (1, 1) direction and
2 steps in the (0, 1) direction. In other words, [(3, 5)]𝛽 = (3, 2).
All this would be easier with a picture, but I’m not very fluent with
TikZ (a common package for drawing things in LATEX).

1.3 Examples of Coordinates

Let’s do an example in 𝑃2(ℝ) = {𝑎 + 𝑏𝑥 + 𝑐𝑥2 |𝑎, 𝑏, 𝑐 ∈ ℝ}.
We can check that 𝛽 = {1 + 𝑥, 𝑥 − 𝑥2, 𝑥2} is a basis for 𝑃2 (but I won’t check

here). Let’s take another polynomial, 𝑝 = 1+2𝑥 +4𝑥2 and express it in this basis!

[𝑝]𝛽 = (𝑐1, 𝑐2, 𝑐3)
𝑝 = 𝑐1(1 + 𝑥) + 𝑐2(𝑥 − 𝑥2) + 𝑐3(𝑥2)

this gives us equations to solve, since the coefficients of 𝑥𝑖 must be equal for
each 𝑖 for these to be the same polynomial.

We get 𝑐1 = 1, so 𝑐2 = 1, which leaves us with 𝑐3 = 5.
Thus [𝑝]𝛽 = (1, 1, 5) ∈ ℝ3. We essentially "converted" a vector in 𝑃2 into a

vector in ℝ3. This "conversion" smells like an isomorphism to me.

1.4 The coordinate function is an isomorphism

Let 𝑉 be an 𝑛-dimensional vector space over 𝐹 and 𝛽 a basis for 𝑉 . Define
𝑓𝛽 : 𝑉 → 𝐹𝑛 by 𝑓𝛽 (𝑥) = [𝑥]𝛽 .

Then 𝑓𝛽 is an isomorphism from 𝑉 to 𝐹𝑛. Let’s check:

• is 𝑓𝛽 linear?

– Yeah! It takes a bit of work to show, but it’s definitely true!

• is 𝑓𝛽 invertible?

– Yes! If we know [𝑥]𝛽 , can we find 𝑥 again? Yes! 𝑥 is just found using
[𝑥]𝛽 as coefficients for a linear combination of the basis vectors!
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• is 𝑓 −1
𝛽

also linear?

– Just kidding, we don’t need to check this. If we know the first two
properties, this one always follows for free, so it’s definitely true!

And keep in mind, we can pick a different basis to get a different isomor-
phism. So we have lots of isomorphisms from 𝑉 to 𝐹𝑛 now!

This is really convenient because some vector spaces look weird, and 𝐹𝑛 is
really simple. Why deal with 𝑃2(ℝ) when we can deal with ℝ3 instead?

2 Matrices vs Linear Transformations

2.1 Converting from Matrices to Linear Transformations

A matrix is just a rectangle of numbers, but we often want to multiply matrices
by vectors.

Definition 2.1. Given an 𝑚 × 𝑛 matrix 𝐴 with elements in 𝐹 , define the left-
multiplication transformation to be a linear map 𝐿𝐴 : 𝐹𝑛 → 𝐹𝑚 given by

𝐿𝐴 (𝑥) = 𝐴𝑥

This defines a function using a matrix, but 𝐿𝐴 ≠ 𝐴. They are different types
of objects. One’s a rectangle full of numbers, the other is a function. Also
note that 𝐿𝐴 is in fact a linear function! This is great news for us, because linear
functions are fun.

However, sometimes people don’t distinguish very carefully between𝐴 and
𝐿𝐴, so you’ll need to be careful that you recognize the difference.

𝐿𝐴 of a vector is𝐴 times that vector. It makes sense to talk about the domain
and codomain of the function 𝐿𝐴, but not of 𝐴.

Often times if we have a definition that applies to linear transformations,
then we say that definition applies to matrices too. The kernel of a linear trans-
formation is the set of vectors whichmap to zero, i.e., for a linear transformation
𝑇 : 𝑉 → 𝑊 , we have ker(𝑇 ) = {𝑥 ∈ 𝑉 | 𝑇 (𝑥) = 0}. Sometimes people define
the kernel of a matrix using the fact that we can get linear transformations from
matrices: they’ll say the kernel of an 𝑚 × 𝑛 matrix 𝐴 is the kernel of 𝐿𝐴! Here
that means ker(𝐴) = {𝑥 ∈ 𝐹𝑛 | 𝐿𝐴 (𝑥) = 0} = {𝑥 ∈ 𝐹𝑛 | 𝐴𝑥 = 0}.

The point here is to be careful! Always keep clear whether you’re talking
about a matrix or a linear transformation, and be weary when definitions apply
to only linear transformations, only matrices, or both!

What if we start with a linear transformation. How can we get a matrix
from it?
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2.2 Matrix of a linear transformation

2.2.1 Standard Matrix

First, suppose 𝑇 : 𝐹𝑛 → 𝐹𝑚 is a linear transformation. The vector space 𝐹𝑛

is pretty nice, because it has a really nice standard basis {𝑒1, . . . , 𝑒𝑛} where 𝑒1 =

(1, 0, 0, . . . , 0), 𝑒2 = (0, 1, 0, . . . , 0), and so on.
A natural question is this: is 𝑇 = 𝐿𝐴 for some 𝐴? We certainly need the

domain and codomain for 𝑇 to be 𝐹𝑛 and 𝐹𝑚, because any 𝐿𝐴 goes from 𝐹𝑛 (for
some 𝑛) to 𝐹𝑚 (for some 𝑚). It doesn’t act on other weirder vector spaces like
𝑃3 or other things.

So assuming 𝑇 : 𝐹𝑛 → 𝐹𝑚 is linear, is it 𝐿𝐴 for some 𝐴? Yes! And even
better, we can find it!

Proposition 2.2. If 𝑇 : 𝐹𝑛 → 𝐹𝑚 is linear, then 𝑇 = 𝐿𝐴 for some matrix 𝐴 called
the "standard matrix of 𝑇 ". 𝐴 is given by the formula:

𝐴 = [𝑇 (𝑒1) |𝑇 (𝑒2) | . . . |𝑇 (𝑒𝑛)]

where those bars represent that the 𝑖th column of 𝐴 is given by the vector 𝑇 (𝑒𝑖) ∈ ℝ𝑚 .

As an example, if 𝑇 : ℝ2 → ℝ is given by 𝑇 (𝑥) = 𝑥 · (1, 2), then we can find
that 𝑇 = 𝐿𝐴 where

𝐴 = [𝑇 (𝑒1) |𝑇 (𝑒2)]
=
[
1 2

]
since𝑇 (𝑒1) = 1 and𝑇 (𝑒2) = 2. Thus we expect𝑇 (𝑥) =

[
1 2

]
𝑥 = 𝐿𝐴 (𝑥) and we

can check that this is indeed true!
To wrap this all up, we see that if𝐴 is the standard matrix of𝑇 , then 𝐿𝐴 gives

us 𝑇 back again! We successfully have a one to one correspondance between
linear maps from 𝐹𝑛 to 𝐹𝑚 and𝑚 × 𝑛 matrices!

2.2.2 More General Formula

What about if 𝑇 : 𝑉 →𝑊 where 𝑉 and𝑊 are just arbitrary vector spaces that
are not 𝐹𝑛 for some 𝑛?

Then it’s impossible for 𝑇 = 𝐿𝐴 for some 𝐴! Absolutely impossible! If 𝐴 is
𝑗 × 𝑘 sized, then the map 𝐿𝐴 has domain 𝐹𝑘 and codomain 𝐹 𝑗 .

So what else can we do? We still want to represent linear transformations
somehow with matrices, because rectangles full of numbers are fantastic (and
we can do Gaussian elimination and things like that to get actual computable
answers to things).
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We can use coordinates. The vector 𝑥 ∈ 𝑉 isn’t in 𝐹𝑛 (because𝑉 and 𝐹𝑛 are
different spaces), but what about [𝑥]𝛽 when 𝛽 is some basis for 𝑉 ? That’s in 𝐹𝑛

(where dim𝑉 = 𝑛)! So we can define a matrix that multiplies by the coordinate
vectors! We define it:

Proposition 2.3. Let 𝑇 : 𝑉 →𝑊 be a linear map where dim𝑉 = 𝑛 and dim𝑊 =

𝑚. Suppose 𝛽 is a basis for 𝑉 and 𝛾 is a basis for𝑊 . Then 𝑇 "can be represented by a
matrix" 𝐴 by which we mean there is some𝑚 × 𝑛 matrix 𝐴 such that

𝐴[𝑥]𝛽 = [𝑇 (𝑥)]𝛾

The matrix 𝐴 is denoted [𝑇 ]𝛾
𝛽
and can be calculated with the following column-

by-column formula where 𝛽 = {𝑣1, . . . , 𝑣𝑛}:

[𝑇 ]𝛾
𝛽
= [[𝑇 (𝑣1)]𝛾 | . . . | [𝑇 (𝑣𝑛)]𝛾 ]

where again the bars represent that the 𝑖th column of [𝑇 ]𝛾
𝛽
is [𝑇 (𝑣𝑖)]𝛾 .

Remember, the old basis vectors go into 𝑇 , then you take coordinates with respect to
the new basis.

Essentially we have two parallel pictures:

1. 𝑇 : 𝑉 →𝑊

2. 𝐿[𝑇 ]𝛾
𝛽
: 𝐹𝑛 → 𝐹𝑚

These are "parallel" in the sense that anything in the second line is just the
"coordinate" version of the first line. This phrasing is a bit vague but I hope
it helps. We could write 𝑇 (𝑥) = 𝑤 or write 𝐿[𝑇 ]𝛾

𝛽
( [𝑥]𝛽 ) = [𝑤]𝛾 and the same

information is conveyed. Note that 𝐿[𝑇 ]𝛾
𝛽
( [𝑥]𝛽 ) = [𝑇 ]𝛾

𝛽
[𝑥]𝛽 .

2.2.3 Back to the standard case

Let’s go back to 𝐹𝑛 for a minute and deal with a special case in a new way.
Suppose 𝑥 ∈ 𝐹𝑛 and 𝛽 = {𝑒1, . . . , 𝑒𝑛} is the standard basis. What’s [𝑥]𝛽?
Well if 𝑥 = (𝑥1, . . . , 𝑥𝑛), then 𝑥 = 𝑥1𝑒1 + · · · + 𝑥𝑛𝑒𝑛, so the coordinate vector

is (𝑥1, . . . , 𝑥𝑛). But that’s just 𝑥 !
So if 𝛽 is the standard basis for 𝐹𝑛, then [𝑥]𝛽 = 𝑥 .
With this in hand, we can talk about the matrix of a linear 𝑇 : 𝐹𝑛 → 𝐹𝑚

with respect to the standard bases. Here suppose 𝛽 is the standard basis for 𝐹𝑛
and 𝛾 is the standard basis for 𝐹𝑚. What does this give us?
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Well, the definition says

[𝑇 ]𝛾
𝛽
[𝑥]𝛽 = [𝑇 (𝑥)]𝛾

but these are all the standard basis (on their respective spaces), so the above for-
mula in this special case just says

[𝑇 ]𝛾
𝛽
𝑥 = 𝑇 (𝑥)

or in other words, if I call 𝐴 = [𝑇 ]𝛾
𝛽
, I see 𝑇 (𝑥) = 𝐴𝑥 ! This means 𝑇 = 𝐿𝐴! Cool!

This means that the more general way we described of finding a matrix
given a linear transformation lines exactly up with the more specific way
we first talked about when the linear transformation goes from 𝐹𝑛 to 𝐹𝑚 and
both the bases are standard bases.

Note that these won’t be the same if the bases chosen are not both the
standard basis. And if 𝑇 has a domain or a codomain which isn’t 𝐹𝑘 for some 𝑘,
then there is no way for 𝑇 = 𝐿𝐴 to be possible.

2.3 Change of basis

What if you have [𝑥]𝛽 but you want [𝑥]𝛾 ? You can always take [𝑥]𝛽 (and 𝛽) to
find 𝑥 , then try to find the coordinates of [𝑥]𝛾 , but this takes a while.

I don’t want to come up with a new formula though, so let’s use the tools
we already have!

We want a matrix that, when you multiply it by [𝑥]𝛽 , you get [𝑥]𝛾 . Is there
a linear transformation in here somewhere? Yes!

In fact, this matrix we want is exactly [id]𝛾
𝛽
, where id is the identity func-

tion id(𝑥) = 𝑥 . Note that sometimes id𝑉 is written 𝐼𝑉 (the subscript tells us
which space is the domain and codomain, since we can have different identity
functions on different sets). Let’s check this matrix works!

Using the formula that the matrix of a linear transformation satisfies, we get:

[id]𝛾
𝛽
[𝑥]𝛽 = [id(𝑥)]𝛾

but id(𝑥) = 𝑥 , so we just get [𝑥]𝛾 ! That’s what we wanted!

Definition 2.4. The change of basis matrix on 𝑉 from 𝛽 to 𝛾 is the matrix [id]𝛾
𝛽
.

It’s called the change of basis matrix because [id]𝛾
𝛽
[𝑥]𝛽 = [𝑥]𝛾 and so multi-

plying by it changes vectors in 𝛽 coordinates to those same vectors in 𝛾 coor-
dinates.
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If 𝛽 = {𝑣1, . . . , 𝑣𝑛}we can use the column-by-column formula for the matrix
of a linear transformation to write

[id𝑉 ]𝛾𝛽 = [[id𝑉 (𝑣1)]𝛾 | . . . | [id𝑉 (𝑣𝑛)]𝛾 ]

= [[𝑣1]𝛾 | . . . | [𝑣𝑛]𝛾 ]

Also fun fact: if 𝐴 is the change of basis matrix from 𝛽 to 𝛾 , then 𝐴−1 is the
change of basis matrix from 𝛾 to 𝛽.

This is a special case of the fact that composition of linear transformations and
multiplication of matrices are related.

2.4 Composition and multiplication

2.4.1 Easier Case

First let’s deal with the easier case. If 𝑇 : 𝐹𝑛 → 𝐹𝑚 and 𝑆 : 𝐹𝑚 → 𝐹𝑝 are linear,
then we can define the linear function 𝑆 ◦ 𝑇 . This is the composition, and it’s
defined by (𝑆 ◦𝑇 ) (𝑥) = 𝑆 (𝑇 (𝑥)).

But since 𝑇 : 𝐹𝑛 → 𝐹𝑚 is linear, it has a standard matrix 𝐴 (𝑚 × 𝑛) such that
𝑇 = 𝐿𝐴. And 𝑆 has a 𝑝 ×𝑚 sized matrix 𝐵 such that 𝑆 = 𝐿𝐵 .

• What’s the standard matrix of 𝑆 ◦𝑇 ?

• What is 𝐿𝐵𝐴?

The answer to both of these questions is the fact thatmatrixmultiplication
corresponds to composition of linear transformations:

𝑆 ◦𝑇 = 𝐿𝐵𝐴

or in other words,

𝐿𝐵𝐴 = 𝐿𝐵 ◦ 𝐿𝐴

multiplication of the matrices 𝐵 and 𝐴 leads to composition of their corresponding
linear transformations!

2.4.2 General Case

As before, the above expression is really a special case of what we can do with
coordinates.
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Suppose 𝑇 : 𝑉 → 𝑊 and 𝑆 : 𝑊 → 𝑈 . Let 𝛼, 𝛽,𝛾 be bases for 𝑈 ,𝑉 ,𝑊

respectively. Then

[𝑆]𝛼
𝛽
[𝑇 ]𝛽𝛾 = [𝑆 ◦𝑇 ]𝛼𝛾 ,

or in other words, composition of linear transformations corresponds to
the product of their matrices with respect to given bases.

Know what 𝑆 and 𝑇 do to coordinates, but need to understand 𝑆 ◦𝑇 ? Well,
just multiply the matrices (as long as the basis for the middle space is the same,
so like [𝑆]𝛼

𝛽
[𝑇 ]𝛿𝛾 will just be nonsense).

So what does this have to do with the 𝐿𝐴 stuff from the previous section?
Well, remember that if 𝑇 = 𝐿𝐴, then 𝐴 is just the matrix of 𝑇 with respect to
the standard bases. So we can turn everything in the previous section about
𝐵𝐴 into [𝑆]standardstandard [𝑇 ]

standard
standard for standard bases on the right spaces.

3 Eigenvalues and Eigenvectors

3.1 What are eigenvalues and eigenvectors?

Let 𝑇 : 𝑉 → 𝑉 be linear. The function 𝑇 might do all sorts of weird things to
vectors, sending some of them to 0, stretching others, rotating others.

If 𝑇 (𝑥) is just a scaled copy of 𝑥 , and 𝑥 is non-zero, we say that 𝑥 is an
eigenvector! Let’s be more precise:

Definition 3.1. Let 𝑇 : 𝑉 → 𝑉 be linear and 𝑥 ≠ 0. If 𝑇 (𝑥) = 𝜆𝑥 for some
scalar 𝜆, then we say 𝑥 is an eigenvector with eigenvalue 𝜆.

The eigenvalue is the amount 𝑥 will stretch by under the function 𝑇 . Note
that this can be negative! So if 𝑇 (𝑥) = −𝑥 (and 𝑥 ≠ 0), then 𝑥 is still an eigen-
vector with eigenvalue −1.

3.2 Characteristic polynomial and how to find eigenvalues

3.2.1 The setup

If 𝑇 (𝑥) = 𝜆𝑥 , then 𝑇 (𝑥) = 𝜆 id(𝑥), or in other words (𝑇 − 𝜆 id) (𝑥) = 0, so
𝑥 ∈ ker(𝑇 − 𝜆 id) where id is the identity function on 𝑉 . And this works in
reverse, too!

This means

Proposition 3.2. If 𝑇 : 𝑉 → 𝑉 is linear and 𝑥 ≠ 0, then 𝑥 is an eigenvector with
eigenvalue 𝜆 if and only if 𝑥 ∈ ker(𝑇 − 𝜆 id).

10



So when can we find such an 𝑥? Whenever ker(𝑇 − 𝜆 id) has non-zero
vectors in it! And remember that (𝑇 − 𝜆 id) : 𝑉 → 𝑉 , and a linear transforma-
tion from 𝑉 to itself is an isomorphism iff it’s a surjection iff it’s an injection
(whenever dim𝑉 is finite!).

(Warning: 𝑇 : 𝑉 → 𝑊 is an isomorphism iff it’s an injection iff it’s a
surjection is false if dim𝑉 ≠ dim𝑊 or if either dimension is infinite!)

Remember that 𝑇 − 𝜆 id is injective if and only if the kernel is {0}.
This means we just need to find when 𝑇 − 𝜆 id is non-invertible to discover

when 𝑇 has some eigenvector with eigenvalue 𝜆. And determinants are really
good for checking when something is invertible!

Let’s convert our discussion now to matrices: if 𝐴 is an 𝑛 × 𝑛 matrix, then
we’ll say 𝐴 has an eigenvector 𝑥 with eigenvalue 𝜆 if 𝐿𝐴 does. That means we’re
looking at 𝐴𝑥 = 𝜆𝑥 now. The argument above works just the same. Now with
matrices we can do calculations!

Proposition 3.3. A scalar 𝜆 is an eigenvalue of the (𝑛 × 𝑛) matrix 𝐴 (that is to say,
there is a non-zero 𝑥 such that 𝐴𝑥 = 𝜆𝑥), if and only if det(𝐴 − 𝜆𝐼𝑛) = 0, where 𝐼𝑛 is
the 𝑛 × 𝑛 identity matrix.

This tells us how to find eigenvalues!

3.2.2 How to find eigenvalues:

• If 𝐴 is a matrix, calculate det(𝐴 − 𝜆𝐼𝑛). This will be a polynomial called
the characteristic polynomial of 𝐴

• Set the characteristic polynomial equal to 0 and find the solutions. These
are the roots of the characteristic polynomial, and they are our eigenval-
ues!

Definition 3.4. If a polynomial factors complete, we say it splits. Not every
polynomial splits when the field is ℝ, for example 𝑥2 + 1 can’t be factored! But
when the field is ℂ, every polynomial can be factored (this is the "fundamental
theorem of algebra").

3.3 Finding eigenvectors

How can we find eigenvectors? Well, first find the eigenvalues. Then if 𝜆 is an
eigenvalue of a matrix 𝐴, just calculate ker(𝐴 − 𝜆𝐼 ). This will contain 0, and
everything else in this space is an eigenvalue!

This is a subspace, so it’s going to have infinitely many vectors in it!
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Definition 3.5. The eigenspace to 𝜆 for a matrix 𝐴 is the space 𝐸𝜆 = ker(𝐴− 𝜆𝐼 )

Often we might want to find a basis for 𝐸𝜆 when 𝜆 is an eigenvalue.

3.4 Multiplicities

When we factor the characteristic polynomial, we’ll get something like (𝜆 −
1)2(𝜆 − 3)4(𝜆 − 0)3.

We often want to talk about those exponents. Those are the algebraic multi-
plicities. In this example, the algebraic multiplicity of 1 is 2, the algebraic mul-
tiplicity of 3 is 4, and the algebraic multiplicity of 0 is 3.

When wemove on to calculating eigenvectors, we get these eigenspaces 𝐸𝜆.
Often we want to talk about their dimension. The dimension dim𝐸𝜆 is called
the geometric multiplicity of 𝜆.

Proposition 3.6. The algebraic multiplicity of 𝜆 is always greater than or equal
to the geometric multiplicity.

This will be useful when we talk about diagonalization!

3.5 Example

Let’s define a 3 × 3 matrix with ℝ valued entries as follows:

𝐴 =


1 0 1
0 2 0
1 0 1

 .
Let’s calculate everything!

• We want to find eigenvalues first.

First we calculate det(𝐴 − 𝜆𝐼 ), the characteristic polynomial. This is

det ©­«

1 0 1
0 2 0
1 0 1

 − 𝜆


1 0 0
0 1 0
0 0 1

ª®¬ = det ©­«

1 − 𝜆 0 1
0 2 − 𝜆 0
1 0 1 − 𝜆


= −𝜆3 + 4𝜆2 − 4𝜆

= (𝜆 − 0) (𝜆 − 2)2

This means we have two eigenvalues: 0 is an eigenvalue with algebraic
multiplicity 1 and 2 is an eigenvalue with algebraic multiplicity 2.
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• Now eigenvectors:

Skipping some computation, we calculate 𝐸0 = ker(𝐴−0𝐼 ) = span{(−1, 0, 1)}.
This is a dimension 1 subspace of ℝ3, so dim𝐸0 = 1 and the geometric
multiplicity of 0 is 1.

We also calculate 𝐸2 = ker(𝐴 − 2𝐼 ) = span{(1, 0, 1), (0, 1, 0)}, which is a
dimension 2 subspace ofℝ3, so dim𝐸2 = 2 and the geometric multiplicity
of 2 is 2.

4 Diagonalization

I don’t have enough time to write this up so let me just include some questions
and a few statements.

4.1 Diagonalize a linear transformation

• If a linear transformation 𝑇 is diagonalizable, that means there is some
basis 𝛽 such that [𝑇 ]𝛽

𝛽
is a diagonal matrix.

– Will it be diagonal for every basis?

– What’s special about a basis that makes [𝑇 ]𝛽
𝛽
diagonal, and what does

this have to do with eigenvalues or eigenvectors?

– If [𝑇 ]𝛽
𝛽
is a diagonal matrix, what diagonal matrix is it? What does

this have to do with eigenvectors or eigenvalues?

• When is a linear transformation diagonalizable? Always? Sometimes?

– If the characteristic polynomial doesn’t split, what does this mean?
– If a single eigenvalue has geometric multiplicity strictly less than its
algebraic multiplicity, what happens?

4.2 What does this mean in the matrix world?

• We say a matrix 𝐴 is diagonalizable if and only if 𝐿𝐴 is diagonalizable as
a linear transformation. Can I express this only with matrices though?
What does 𝐴 = 𝑆𝐷𝑆−1 represent?

• If I write 𝐴 = 𝑆𝐷𝑆−1, how can I interpret 𝑆 as a change-of-coordinates
matrix?
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• What will 𝐷 contain on its diagonal?

• What will 𝑆 contain as its columns?

4.3 Calculations!

• We already worked out the eigenvectors and eigenvalues for a matrix in
a previous section. Can you diagonalize that matrix?
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