Free products of completely positive maps

J. Bahr

March 366th, 2020

J. Bahr Free products of completely positive maps

Intro Definitions Remarks

Our goal

► Let's show that if (M₁, τ₁) and (M₂, τ₂) are tracial von Neumann algebras with the Haagerup property, then M₁ * M₂ has it too.

イロト イボト イヨト イヨト

Intro Definitions Remarks

Our goal

- Let's show that if (M_1, τ_1) and (M_2, τ_2) are tracial von Neumann algebras with the Haagerup property, then $M_1 * M_2$ has it too.
- ▶ Actually, let's show the relative version of this, where $M_1 \supset N$ and $M_2 \supset N$ both have the relative Haagerup property and we take $M_1 *_N M_2$.

Intro Definitions Remarks

Our goal

- Let's show that if (M_1, τ_1) and (M_2, τ_2) are tracial von Neumann algebras with the Haagerup property, then $M_1 * M_2$ has it too.
- ▶ Actually, let's show the relative version of this, where $M_1 \supset N$ and $M_2 \supset N$ both have the relative Haagerup property and we take $M_1 *_N M_2$.
- Free products of completely positive maps?

Intro **Definitions** Remarks

Setup and Notation

• Let $N \subset M$ be finite vN algebras

J. Bahr Free products of completely positive maps

イロト イヨト イヨト イヨト

Intro **Definitions** Remarks

Setup and Notation

- Let $N \subset M$ be finite vN algebras
- \blacktriangleright τ a faithful normal trace on M

イロト イボト イヨト イヨト

Intro Definitions Remarks

Setup and Notation

- Let $N \subset M$ be finite vN algebras
- au a faithful normal trace on M
- M acts by left multiplicaton on L²(M, τ) in the GNS representation of τ

イロト イボト イヨト イヨト

Intro Definitions Remarks

Setup and Notation

- Let $N \subset M$ be finite vN algebras
- au a faithful normal trace on M
- M acts by left multiplicaton on L²(M, τ) in the GNS representation of τ
- $\hat{x} \in L^2(M, \tau)$ corresponds to $x \in M$

Intro Definitions Remarks

Setup and Notation

- Let N ⊂ M be finite vN algebras
- \blacktriangleright τ a faithful normal trace on M
- M acts by left multiplicaton on L²(M, τ) in the GNS representation of τ
- $\hat{x} \in L^2(M, \tau)$ corresponds to $x \in M$
- $E_N : M \to N$ is the τ -preserving conditional expectation, with $e_N \in \mathcal{B}(L^2(M))$ the corresponding projection.

Intro Definitions Remarks

More setup

イロト イボト イヨト イヨト

Intro Definitions Remarks

More setup

▶ If $\Phi : M \to M$ is an E_N -preserving N-bimodular unital completely positive map, we can extend to $T_{\Phi} \in \mathcal{B}(L^2(M))$

• Set
$$\mathcal{T}_{\Phi}(\hat{x}) = \widehat{\Phi(x)}$$
 for $x \in M$ and extend by continuity

イロト イボト イヨト イヨト

Intro Definitions Remarks

More setup

▶ If $\Phi : M \to M$ is an E_N -preserving N-bimodular unital completely positive map, we can extend to $T_{\Phi} \in \mathcal{B}(L^2(M))$

• Set
$$\mathcal{T}_{\Phi}(\hat{x}) = \widehat{\Phi(x)}$$
 for $x \in M$ and extend by continuity

We can decompose

$$T = \begin{pmatrix} I & 0 \\ 0 & T^0 \end{pmatrix}$$

where we've written $L^2(M) = L^2(N) \oplus L^2(N)^{\perp}$.

Intro **Definitions** Remarks

What to do about compactness

Recall in the definition of the Haagerup property that T_{ϕ} must be a compact operator on $L^2(M)$.

Intro Definitions Remarks

What to do about compactness

- Recall in the definition of the Haagerup property that T_{ϕ} must be a compact operator on $L^2(M)$.
- What's the corresponding set in the relative case?

Intro Definitions Remarks

What to do about compactness

- Recall in the definition of the Haagerup property that T_{ϕ} must be a compact operator on $L^2(M)$.
- What's the corresponding set in the relative case?
- Define $F_N(M) = \{T \in N' \cap \mathcal{B}(L^2(M)) \mid T = \sum_{i=1}^k a_i e_N b_i\}$

Intro Definitions Remarks

What to do about compactness

- Recall in the definition of the Haagerup property that T_φ must be a compact operator on L²(M).
- What's the corresponding set in the relative case?
- Define $F_N(M) = \{T \in N' \cap \mathcal{B}(L^2(M)) \mid T = \sum_{i=1}^k a_i e_N b_i\}$
- Let $\mathcal{K}_N(M)$ be the norm closure of $F_N(M)$ in $\mathcal{B}(L^2(M))$

Intro Definitions Remarks

Relative Property (H)

The finite vN algebra $M \supseteq N$ has property (H) relative to N if

J. Bahr Free products of completely positive maps

イロト イボト イヨト イヨト

Intro Definitions Remarks

Relative Property (H)

The finite vN algebra $M \supseteq N$ has property (H) relative to N if there exists a net $\{\Phi_i : M \to M\}_{i \in I}$ of E_N -preserving N-bimodular unital cp maps such that

イロト イヨト イヨト イヨト

Intro Definitions Remarks

Relative Property (H)

The finite vN algebra $M \supseteq N$ has property (H) relative to N if there exists a net $\{\Phi_i : M \to M\}_{i \in I}$ of E_N -preserving N-bimodular unital cp maps such that

1.
$$\lim_{i \to i} \|\Phi_{i}(x) - x\|_{2} = 0$$
 for $x \in M$

イロト イヨト イヨト イヨト

Intro Definitions Remarks

Relative Property (H)

The finite vN algebra $M \supseteq N$ has property (H) relative to N if there exists a net $\{\Phi_i : M \to M\}_{i \in I}$ of E_N -preserving N-bimodular unital cp maps such that

1.
$$\lim_{i \to i} \|\Phi_{i}(x) - x\|_{2} = 0$$
 for $x \in M$

2. $T_{\Phi_i} \in \mathcal{K}_N(M)$

イロト イヨト イヨト イヨト

Intro Definitions Remarks

Remarks

▶ If $N = \mathbb{C}$ this is just the Haagerup property

J. Bahr Free products of completely positive maps

・ロン ・回 と ・ ヨ と ・ ヨ と …

Intro Definitions Remarks

Remarks

- If $N = \mathbb{C}$ this is just the Haagerup property
- This definition differs slightly from the one in Popa's book. Here we have unital and *E_N* preserving. There we have subunital and subtracial.

イロト イボト イヨト イヨト

Intro Definitions Remarks

Remarks

- If $N = \mathbb{C}$ this is just the Haagerup property
- This definition differs slightly from the one in Popa's book. Here we have unital and E_N preserving. There we have subunital and subtracial.
- $T^0_{\Phi_i}$ can be assumed to be a contraction in the definition

<ロト < 同ト < 三ト < 三ト

Intro Definitions Remarks

Remarks

- If $N = \mathbb{C}$ this is just the Haagerup property
- This definition differs slightly from the one in Popa's book. Here we have unital and E_N preserving. There we have subunital and subtracial.
- ► $T_{\Phi_i}^0$ can be assumed to be a contraction in the definition, by considering

$$\Phi_{i,\varepsilon} = \frac{1}{1+\varepsilon} (\Phi_i + \varepsilon E_N)$$

and seeing that this makes $\mathcal{T}^0_{\Phi_{i,\varepsilon}}$ a contraction. We'll use this later.

Setting up $M_1 *_N M_2$ Φ_0 is cp - setting up ρ Φ_0 is cp - showing ρ works

Setting up the amalgamated free product

▶ M_1, M_2 be finite vN algebras with traces τ_i and $E_i : M_i \to N$ trace preserving conditional expectations

Setting up $M_1 *_N M_2$ Φ_0 is cp - setting up ρ Φ_0 is cp - showing ρ works

Setting up the amalgamated free product

▶ M_1, M_2 be finite vN algebras with traces τ_i and $E_i : M_i \rightarrow N$ trace preserving conditional expectations

• Set
$$M_i^0 = \ker E_i$$
 and define

$$M_0^0 = N \oplus \bigoplus_{n \ge 1, i_1 \ne \dots \ne i_n} M_{i_1}^0 \otimes_N \dots \otimes_N M_{i_n}^0$$

Setting up $M_1 *_N M_2$ Φ_0 is cp - setting up ρ Φ_0 is cp - showing ρ works

Setting up the amalgamated free product

• Define the map $E_0: M_0^0 \to N$ by

$$E_0(x) = egin{cases} x & ext{for } x \in N \ 0 & ext{for } x ext{ in the other summand} \end{cases}$$

J. Bahr Free products of completely positive maps

Setting up $M_1 *_N M_2$ Φ_0 is cp - setting up ρ Φ_0 is cp - showing ρ works

Setting up the amalgamated free product

• Define the map $E_0: M_0^0 \to N$ by

 $E_0(x) = \begin{cases} x & \text{for } x \in N \\ 0 & \text{for } x \text{ in the other summand} \end{cases}$

• Set
$$\tau = \tau_1 E_0 = \tau_2 E_0$$
 on M_0^0

Setting up $M_1 *_N M_2$ Φ_0 is cp - setting up ρ Φ_0 is cp - showing ρ works

Setting up the amalgamated free product

• Define the map
$$E_0: M_0^0 \to N$$
 by

$$E_0(x) = egin{cases} x & ext{for } x \in N \ 0 & ext{for } x ext{ in the other summand} \end{cases}$$

• Set
$$\tau = \tau_1 E_0 = \tau_2 E_0$$
 on M_0^0
• Set $M = M_1 *_N M_2 = \left(\widehat{M_0^0}\right)''$ which acts on

Setting up $M_1 *_N M_2$ Φ_0 is cp - setting up ρ Φ_0 is cp - showing ρ works

Setting up the amalgamated free product

イロト イボト イヨト イヨト

Setting up $M_1 *_N M_2$ Φ_0 is cp - setting up ρ Φ_0 is cp - showing ρ works

Setting up the amalgamated free product

Finally, E_0 extends to a τ -preserving conditional expectation $E: M \to N$ and M_0^0 is a weakly dense *-subalg of M,

 $\begin{array}{c} \text{Basics} \\ \text{Defining the free product} \\ \text{Main result} \\ \text{References} \end{array} \qquad \begin{array}{c} \text{Setting up} \\ \phi_0 \text{ is } cp - \phi_$

Setting up $M_1 *_N M_2$ Φ_0 is cp - setting up ρ Φ_0 is cp - showing ρ works

Setup

• Let $\Phi_i : M_i \to M_i$ for i = 1, 2 be E_N -preserving N-bimodular unital cp maps.

J. Bahr Free products of completely positive maps

 $\begin{array}{c|c} \text{Basics} \\ \text{Defining the free product} \\ \text{Main result} \\ \text{References} \\ \end{array} \begin{array}{c} \text{Setting up } M_1 \ast_N M_2 \\ \Phi_0 \text{ is } \text{cp - setting up } \rho \\ \Phi_0 \text{ is } \text{cp - showing } \rho \text{ works} \end{array}$

Setup

- Let $\Phi_i : M_i \to M_i$ for i = 1, 2 be E_N -preserving N-bimodular unital cp maps.
- ▶ Define $\Phi_0 : M_0^0 \to M_0^0$ via

$$\Phi_0(x) = \begin{cases} x & \text{for } x \in N \\ \Phi_{i_1}(a_1) \dots \Phi_{i_n}(a_n) & \text{for } x = a_1 \dots a_n \end{cases}$$

where $a_j \in M_{i_j}^0$ and $i_1 \neq \ldots i_n$ as usual.

イロト イボト イヨト イヨト

 $\begin{array}{c|c} \text{Basics} \\ \text{Defining the free product} \\ \text{Main result} \\ \text{References} \\ \end{array} \begin{array}{c} \text{Setting up } M_1 \ast_N M_2 \\ \phi_0 \text{ is } \text{cp - setting up } \rho \\ \phi_0 \text{ is } \text{cp - showing } \rho \text{ works} \end{array}$

Setup

- Let $\Phi_i : M_i \to M_i$ for i = 1, 2 be E_N -preserving N-bimodular unital cp maps.
- ▶ Define $\Phi_0 : M_0^0 \to M_0^0$ via

$$\Phi_0(x) = \begin{cases} x & \text{for } x \in N \\ \Phi_{i_1}(a_1) \dots \Phi_{i_n}(a_n) & \text{for } x = a_1 \dots a_n \end{cases}$$

where $a_j \in M_{i_j}^0$ and $i_1 \neq \ldots i_n$ as usual.

- This is completely positive on M_0^0 .
 - this takes some work

 $\begin{array}{c|c} \text{Basics} \\ \text{Defining the free product} \\ \text{Main result} \\ \text{References} \\ \end{array} \begin{array}{c} \text{Setting up } M_1 \ast_N M_2 \\ \Phi_0 \text{ is } \text{cp - setting up } \rho \\ \Phi_0 \text{ is } \text{cp - showing } \rho \text{ works} \end{array}$

Setup

- Let $\Phi_i : M_i \to M_i$ for i = 1, 2 be E_N -preserving N-bimodular unital cp maps.
- ► Define $\Phi_0 : M_0^0 \to M_0^0$ via

$$\Phi_0(x) = \begin{cases} x & \text{for } x \in N \\ \Phi_{i_1}(a_1) \dots \Phi_{i_n}(a_n) & \text{for } x = a_1 \dots a_n \end{cases}$$

where $a_j \in M_{i_i}^0$ and $i_1 \neq \ldots i_n$ as usual.

- This is completely positive on M₀⁰.
 - this takes some work
- We can extend this to Φ cp on $M_1 *_N M_2$?
 - this also takes a bit of work, but not as much (see p219 of [2])

Image: 1 million of the second sec

• • = • • = •

Setting up $M_1 *_N M_2$ Φ_0 is cp - setting up ρ Φ_0 is cp - showing ρ works

Why is Φ_0 cp?

We're going to show Φ_0 is cp on M_0^0 by directly finding the Stinespring dilation from the dilations of Φ_1 and Φ_2 . We'll be using a pretty technical version where we understand the spaces better. We'll be writing $H = L^2 M$, $H_i = L^2 M_i$ for i = 1, 2, and

$$H_0 = N \oplus \bigoplus H^0_{i_1} \otimes \cdots \otimes H^0_{i_n}$$

as the free product with identity $\xi = I_N \oplus 0$.
Setting up $M_1 *_N M_2$ Φ_0 is cp - setting up ρ Φ_0 is cp - showing ρ works

Stinespring dilations of Φ_i

• Viewing $\Phi_i : M_i \to \mathcal{B}(L^2M) =: \mathcal{B}(H)$ for i = 1, 2, write

 $\Phi_i = V_i^* \rho_i V_i$

where $\rho_i : \mathcal{B}(H) \to \mathcal{B}(K_i)$ is a unital representation and $V : H \to K_i$ is an inclusion. Also $K_i = \overline{\text{span}}(\rho_i)(M_i)H$.

Setting up $M_1 *_N M_2$ Φ_0 is cp - setting up ρ Φ_0 is cp - showing ρ works

Stinespring dilations of Φ_i

• Viewing $\Phi_i : M_i \to \mathcal{B}(L^2M) \eqqcolon \mathcal{B}(H)$ for i = 1, 2, write

 $\Phi_i = V_i^* \rho_i V_i$

where $\rho_i : \mathcal{B}(H) \to \mathcal{B}(K_i)$ is a unital representation and $V : H \to K_i$ is an inclusion. Also $K_i = \overline{\text{span}}(\rho_i)(M_i)H$. Set $K_i^0 := K_i \ominus H$

Setting up $M_1 *_N M_2$ Φ_0 is cp - setting up ρ Φ_0 is cp - showing ρ works

Stinespring dilations of Φ_i

• Viewing $\Phi_i : M_i \to \mathcal{B}(L^2M) \eqqcolon \mathcal{B}(H)$ for i = 1, 2, write

 $\Phi_i = V_i^* \rho_i V_i$

where $\rho_i : \mathcal{B}(H) \to \mathcal{B}(K_i)$ is a unital representation and $V : H \to K_i$ is an inclusion. Also $K_i = \overline{\text{span}}(\rho_i)(M_i)H$.

► Set $K_i^0 := K_i \ominus H = \overline{\text{span}}(\rho_i - \Phi_i)(M_i)(H)$ (bit of work)

Setting up $M_1 *_N M_2$ Φ_0 is cp - setting up ρ Φ_0 is cp - showing ρ works

Stinespring dilations of Φ_i

• Viewing $\Phi_i : M_i \to \mathcal{B}(L^2M) \eqqcolon \mathcal{B}(H)$ for i = 1, 2, write

 $\Phi_i = V_i^* \rho_i V_i$

where $\rho_i : \mathcal{B}(H) \to \mathcal{B}(K_i)$ is a unital representation and $V : H \to K_i$ is an inclusion. Also $K_i = \overline{\text{span}}(\rho_i)(M_i)H$.

► Set $K_i^0 := K_i \ominus H = \overline{\text{span}}(\rho_i - \Phi_i)(M_i)(H)$ (bit of work)

• We also have $\rho_i(N)K_i^0 \subseteq K_i^0$ (a bit of work too)

Setting up $M_1 *_N M_2$ Φ_0 is cp - setting up ρ Φ_0 is cp - showing ρ works

Stinespring dilations of Φ_i

• Viewing $\Phi_i : M_i \to \mathcal{B}(L^2M) \eqqcolon \mathcal{B}(H)$ for i = 1, 2, write

$$\Phi_i = V_i^* \rho_i V_i$$

where $\rho_i : \mathcal{B}(H) \to \mathcal{B}(K_i)$ is a unital representation and $V : H \to K_i$ is an inclusion. Also $K_i = \overline{\text{span}}(\rho_i)(M_i)H$.

► Set $K_i^0 := K_i \ominus H = \overline{\text{span}}(\rho_i - \Phi_i)(M_i)(H)$ (bit of work)

• We also have $\rho_i(N)K_i^0 \subseteq K_i^0$ (a bit of work too)

• Write
$$\rho_i^0 \upharpoonright_{K_i^0} : N \to \mathcal{B}(K_i^0)$$

Setting up $M_1 *_N M_2$ Φ_0 is cp - setting up ρ Φ_0 is cp - showing ρ works

Defining a new space, part 1

Set X_i = ⊕_{n≥1,i1≠...≠in≠i} H⁰_{i1} ⊗_N ··· ⊗_N H⁰_{in} as an N-bimodule.
 Set Y_i to be the same except i₁ ≠ 1.

Setting up $M_1 *_N M_2$ Φ_0 is cp - setting up ρ Φ_0 is cp - showing ρ works

Defining a new space

Define

$$\begin{split} \mathcal{K} &= \mathcal{H} \oplus \left(\bigoplus_{i} \mathcal{K}_{i}^{0} \right) \oplus \left(\bigoplus_{i} \mathcal{X}_{i} \otimes_{\rho_{i}^{0}} \mathcal{K}_{i}^{0} \right) \\ &= \cdots = \mathcal{K}_{i} \oplus \left(\mathcal{X}_{i} \otimes_{\rho_{i}^{0}} \mathcal{K}_{i}^{0} \right) \oplus \bigoplus_{j \neq i} (\mathcal{N} \oplus \mathcal{X}_{j}) \otimes_{\rho_{j}^{0}} \mathcal{K}_{j}^{0} \end{split}$$

here $\otimes_{\rho_i^0}$ is the completion of the algebraic tensor product with the scalar product induced by ρ_i^0 .

◆□▶ ◆舂▶ ◆注▶ ◆注▶

Setting up $M_1 *_M M_2$ Φ_0 is cp - setting up ρ Φ_0 is cp - showing ρ works

Defining a new space

Define

$$\begin{split} \mathcal{K} &= \mathcal{H} \oplus \left(\bigoplus_{i} \mathcal{K}_{i}^{0} \right) \oplus \left(\bigoplus_{i} \mathcal{X}_{i} \otimes_{\rho_{i}^{0}} \mathcal{K}_{i}^{0} \right) \\ &= \cdots = \mathcal{K}_{i} \oplus \left(\mathcal{X}_{i} \otimes_{\rho_{i}^{0}} \mathcal{K}_{i}^{0} \right) \oplus \bigoplus_{j \neq i} (\mathcal{N} \oplus \mathcal{X}_{j}) \otimes_{\rho_{j}^{0}} \mathcal{K}_{j}^{0} \end{split}$$

here $\otimes_{\rho_{i}^{0}}$ is the completion of the algebraic tensor product with the scalar product induced by ρ_i^0 . We define $\tilde{\rho}_i : M_i \to \mathcal{B}(K)$ by

$$ilde{
ho}_i(a) =
ho_i(a) \oplus \left(\sigma_i(a) \! \upharpoonright_{\bigoplus X_i} \otimes 1_{\mathcal{K}_i^0} \right) \oplus \bigoplus_{j \neq i} \sigma_{ij}(a)$$

in an effort to extend ρ_i .

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

 $\begin{array}{c|c} \text{Basics} \\ \text{Defining the free product} \\ \text{Main result} \\ \text{References} \end{array} & \begin{array}{c} \text{Setting up } M_1 \ast_N M_2 \\ \Phi_0 \text{ is cp - setting up } \rho \\ \Phi_0 \text{ is cp - showing } \rho \text{ works} \end{array}$

What's σ_i ?

• $\pi_i : M_i \to \mathcal{B}(H_i) = \mathcal{B}(L^2 M_i)$ is the GNS representation induced by left-multiplication

イロト イボト イヨト イヨト

 $\begin{array}{c|c} \text{Basics} \\ \text{Defining the free product} \\ \text{Main result} \\ \text{References} \\ \end{array} \begin{array}{c} \text{Setting up } M_1 \ast_N M_2 \\ \Phi_0 \text{ is cp - setting up } \rho \\ \Phi_0 \text{ is cp - showing } \rho \text{ works} \end{array}$

What's σ_i ?

- $\pi_i : M_i \to \mathcal{B}(H_i) = \mathcal{B}(L^2 M_i)$ is the GNS representation induced by left-multiplication
- ▶ $V_i : H_0 \rightarrow H_i \otimes Y_i$ are unitaries (their definition is a bit messy)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

 $\begin{array}{c|c} \text{Basics} \\ \text{Defining the free product} \\ \text{Main result} \\ \text{References} \\ \end{array} \begin{array}{c} \text{Setting up } M_1 \ast_N M_2 \\ \Phi_0 \text{ is cp - setting up } \rho \\ \Phi_0 \text{ is cp - showing } \rho \text{ works} \end{array}$

What's σ_i ?

- $\pi_i : M_i \to \mathcal{B}(H_i) = \mathcal{B}(L^2 M_i)$ is the GNS representation induced by left-multiplication
- ▶ $V_i: H_0 \rightarrow H_i \otimes Y_i$ are unitaries (their definition is a bit messy)
- ► There are *-homormophisms $\sigma_i : M_i \to \mathcal{B}(H_0)$ where $H_0 = N \oplus \bigoplus H_{i_1}^0 \otimes \cdots \otimes H_{i_n}^0$ such that

・ロト ・ 日 ト ・ ヨ ト ・

 $\begin{array}{c|c} \text{Basics} \\ \text{Defining the free product} \\ \text{Main result} \\ \text{References} \\ \end{array} \begin{array}{c} \text{Setting up } M_1 \ast_N M_2 \\ \Phi_0 \text{ is cp - setting up } \rho \\ \Phi_0 \text{ is cp - showing } \rho \text{ works} \end{array}$

What's σ_i ?

- $\pi_i : M_i \to \mathcal{B}(H_i) = \mathcal{B}(L^2 M_i)$ is the GNS representation induced by left-multiplication
- ▶ $V_i : H_0 \rightarrow H_i \otimes Y_i$ are unitaries (their definition is a bit messy)
- ► There are *-homormophisms $\sigma_i : M_i \to \mathcal{B}(H_0)$ where $H_0 = N \oplus \bigoplus H_{i_1}^0 \otimes \cdots \otimes H_{i_n}^0$ such that ► $\sigma_i = \lambda_i \pi_i$

 $\begin{array}{c|c} \text{Basics} \\ \text{Defining the free product} \\ \text{Main result} \\ \text{References} \\ \end{array} \begin{array}{c} \text{Setting up } M_1 \ast_N M_2 \\ \Phi_0 \text{ is } \text{cp - setting up } \rho \\ \Phi_0 \text{ is } \text{cp - showing } \rho \text{ works} \end{array}$

What's σ_i ?

• $\pi_i : M_i \to \mathcal{B}(H_i) = \mathcal{B}(L^2 M_i)$ is the GNS representation induced by left-multiplication

▶ $V_i : H_0 \rightarrow H_i \otimes Y_i$ are unitaries (their definition is a bit messy)

$$\lambda_i(T) = V_i^{-1}(T \otimes I)V_i$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Setting up $M_1 *_N M_2$ Φ_0 is cp - setting up ρ Φ_0 is cp - showing ρ works

What's σ_{ij} ?

• $W_j : N \otimes K_j^0 \to K_j^0$ via $W_j(\sum n_s \otimes k_s) = \sum \rho_j(n_s)k_s$ are unitaries

J. Bahr Free products of completely positive maps

Setting up $M_1 *_N M_2$ Φ_0 is cp - setting up ρ Φ_0 is cp - showing ρ works

What's σ_{ij} ?

•
$$W_j : N \otimes K_j^0 \to K_j^0$$
 via $W_j(\sum n_s \otimes k_s) = \sum \rho_j(n_s)k_s$ are unitaries

$$\blacktriangleright I_j = I_{X_j \otimes K_j^0}$$

J. Bahr Free products of completely positive maps

<ロ> <同> <同> <同> <同> < 同> < 同> <

э.

 $\begin{array}{c|c} \text{Basics} \\ \text{Defining the free product} \\ \text{Main result} \\ \text{References} \end{array} \qquad \begin{array}{c} \text{Setting up } M_1 \ast_N M_2 \\ \Phi_0 \text{ is cp - setting up } \rho \\ \Phi_0 \text{ is cp - showing } \rho \text{ works} \end{array}$

What's σ_{ij} ?

•
$$W_j : N \otimes K_j^0 \to K_j^0$$
 via $W_j(\sum n_s \otimes k_s) = \sum \rho_j(n_s)k_s$ are unitaries

$$I_{j} = I_{X_{j} \otimes K_{j}^{0}}$$

$$\sigma_{ij}(a) = (W_{j} \oplus I_{j}) \left(\sigma_{i}(a) \upharpoonright_{N \oplus X_{j} \otimes I_{K_{j}^{0}}} \right) (W_{j}^{*} \oplus I_{j})$$

Think of this as another way of extending ρ_i .

 $\begin{array}{c} \text{Basics} \\ \text{Defining the free product} \\ \text{Main result} \\ \text{References} \end{array} \qquad \begin{array}{c} \text{Setti} \\ \Phi_0 \text{ is} \\ \Phi_0 \text{ is} \end{array}$

Setting up $M_1 *_N M_2$ Φ_0 is cp - setting up ρ Φ_0 is cp - showing ρ works

Are the $\tilde{\rho}_i$'s compatible? A ρ from the $\tilde{\rho}_i$'s!

► If these "extensions" $\tilde{\rho}_i$ differ on *N*, we can't define a ρ on the free product $M_1 *_N M_2$.

 $\begin{array}{c|c} \text{Basics} \\ \text{Defining the free product} \\ \text{Main result} \\ \text{References} \end{array} \qquad \begin{array}{c} \text{Setting up } M_1 \ast_N M_2 \\ \Phi_0 \text{ is cp - setting up } \rho \\ \Phi_0 \text{ is cp - showing } \rho \text{ works} \end{array}$

Are the $\tilde{\rho}_i$'s compatible? A ρ from the $\tilde{\rho}_i$'s!

- ► If these "extensions" $\tilde{\rho}_i$ differ on *N*, we can't define a ρ on the free product $M_1 *_N M_2$.
- This is not obvious but follows from the way we set up σ_i and σ_{ij} .

 $\begin{array}{c|c} \text{Basics} \\ \text{Defining the free product} \\ \text{Main result} \\ \text{References} \end{array} \qquad \begin{array}{c} \text{Setting up } M_1 \ast_N M_2 \\ \Phi_0 \text{ is cp - setting up } \rho \\ \Phi_0 \text{ is cp - showing } \rho \text{ works} \end{array}$

Are the $\tilde{\rho}_i$'s compatible? A ρ from the $\tilde{\rho}_i$'s!

- If these "extensions" ρ̃_i differ on N, we can't define a ρ on the free product M₁ *_N M₂.
- This is not obvious but follows from the way we set up σ_i and σ_{ij} .
- Finally, set ρ = ρ̃₁ * ρ̃₂ : M₀⁰ → B(K). We'd like to show this is the Stinespring dilation of Φ₀ as defined in the previous section. As a reminder:

$$\Phi_0(x) = \begin{cases} x & \text{for } x \in N \\ \Phi_{i_1}(a_1) \dots \Phi_{i_n}(a_n) & \text{for } x = a_1 \dots a_n \end{cases}$$

The consequence of this (and the goal) is that Φ_0 is cp

Setting up $M_1 *_N M_2$ Φ_0 is cp - setting up ρ Φ_0 is cp - showing ρ works

Comparing $\tilde{\rho}_i$ with Φ_i

▶ It's enough to show that for $h, h' \in H$ (the smaller space), $x \in M$, we have

$$\left\langle \rho(x)h,h'\right\rangle = \left\langle \Phi(x)h,h'\right\rangle$$

for then ρ will satisfy $\Phi = V^* \rho V$ for the inclusion $V : H \to K$.

Setting up $M_1 *_N M_2$ Φ_0 is cp - setting up ρ Φ_0 is cp - showing ρ works

Comparing $\tilde{\rho}_i$ with Φ_i

► It's enough to show that for $h, h' \in H$ (the smaller space), $x \in M$, we have

$$\left\langle \rho(x)h,h'\right\rangle = \left\langle \Phi(x)h,h'\right\rangle$$

for then ρ will satisfy $\Phi = V^* \rho V$ for the inclusion $V : H \to K$.

Showing this for x = n ∈ N follows from what ρ_i does on N (being dilations of Φ_i) and the definition of ρ̃_i.

 $\begin{array}{c|c} \text{Basics} \\ \text{Defining the free product} \\ \text{Main result} \\ \text{References} \end{array} \qquad \begin{array}{c} \text{Setting up } M_1 \ast_N M_2 \\ \phi_0 \text{ is } \text{cp - setting up } \rho \\ \phi_0 \text{ is } \text{cp - showing } \rho \text{ works} \end{array}$

Comparing $\tilde{\rho}_i$ with Φ_i (continued)

▶ Finally, for $a_j \in M^0_{i_j}$, $1 \le j \le n$, and $i_1 \ne ... \ne i_n$ we want to verify

$$\langle \tilde{\rho}_{i_1}(a_1) \dots \tilde{\rho}_{i_n}(a_n)h, h' \rangle = \langle \Phi_{i_1}(a_1) \dots \Phi_{i_n}(a_n)h, h' \rangle$$

 $\begin{array}{c|c} \text{Basics} \\ \text{Defining the free product} \\ \text{Main result} \\ \text{References} \end{array} \qquad \begin{array}{c} \text{Setting up } M_1 \ast_N M_2 \\ \phi_0 \text{ is } \text{cp - setting up } \rho \\ \phi_0 \text{ is } \text{cp - showing } \rho \text{ works} \end{array}$

Comparing $\tilde{\rho}_i$ with Φ_i (continued)

▶ Finally, for $a_j \in M^0_{i_j}$, $1 \le j \le n$, and $i_1 \ne ... \ne i_n$ we want to verify

$$\left\langle \tilde{\rho}_{i_1}(a_1) \dots \tilde{\rho}_{i_n}(a_n)h, h' \right\rangle = \left\langle \Phi_{i_1}(a_1) \dots \Phi_{i_n}(a_n)h, h' \right\rangle$$

This is done by induction. First, the base case:

$$egin{aligned} & ilde{
ho}_{i_n}(a_n)h =
ho_{i_n}(a_n)h \ &= \Phi_{i_n}(a_n)h + \left(
ho_{i_n}(a_n) - \Phi_{i_n}(a_n)
ight)h \ &= \Phi_{i_n}(a_n)h + k_n \end{aligned}$$

where $k_n \in K_{i_n}^0$ since ρ_{i_n} is the Stinespring dilation of Φ_{i_n} .

 $\begin{array}{c|c} \text{Basics} \\ \text{Defining the free product} \\ \text{Main result} \\ \text{References} \end{array} \qquad \begin{array}{c} \text{Setting up } M_1 \ast_N M_2 \\ \Phi_0 \text{ is cp - setting up } \rho \\ \Phi_0 \text{ is cp - showing } \rho \text{ works} \end{array}$

Rest of base case

$$\begin{split} \tilde{\rho}_{i_{n-1}}(a_{n-1})\tilde{\rho}_{i_{n}}(a_{n})h &= \tilde{\rho}_{i_{n-1}}(a_{n-1})\left(\Phi_{i_{n}}(a_{n})h + k_{n}\right) \\ &= \Phi_{i_{n-1}}(a_{n-1})\Phi_{i_{n}}(a_{n})h \\ &+ \left(\rho_{i_{n-1}}(a_{n-1}) - \Phi_{i_{n-1}}(a_{n-1})\right)\Phi_{i_{n}}(a_{n})h \\ &+ \sigma_{i_{n-1}}(a_{n-1})\otimes k_{n} \end{split}$$

In other words, we can write this as $\Phi_{i_{n-1}}(a_{n-1})\Phi_{i_n}(a_n)h + \eta_{n-2}$ where

$$\eta_{n-2} \in \mathcal{K}^{0}_{i_{n-1}} \oplus \bigoplus_{s=n-1}^{n-1} (\mathcal{H}^{0}_{i_{n-1}} \otimes \cdots \otimes \mathcal{H}^{0}_{i_{s}}) \otimes \mathcal{K}^{0}_{i_{s}}.$$

Of course here that big sum isn't interesting, but later it will have more terms.

J. Bahr Free products of completely positive maps

Setting up $M_1 *_N M_2$ Φ_0 is cp - setting up ρ Φ_0 is cp - showing ρ works

Inductive step

Assuming

$$ilde{
ho}_{i_{k+1}}(a_{k+1})\dots ilde{
ho}_{i_n}(a_n)h=\Phi_{i_{k+1}}(a_{k+1})\dots\Phi_{i_n}(a_n)h+\eta_k$$

where

$$\eta_k \in \mathcal{K}^0_{i_{k+1}} \oplus \bigoplus_{s=k+1}^{n-1} (\mathcal{H}^0_{i_{k+1}} \otimes \cdots \otimes \mathcal{H}^0_{i_s}) \otimes \mathcal{K}^0_{i_s}.$$

we can show this holds for the kth term thrown on too.

イロト イヨト イヨト

Setting up $M_1 *_N M_2$ Φ_0 is cp - setting up ρ Φ_0 is cp - showing ρ works

Inductive step

Assuming

$$ilde{
ho}_{i_{k+1}}(a_{k+1})\dots ilde{
ho}_{i_n}(a_n)h=\Phi_{i_{k+1}}(a_{k+1})\dots\Phi_{i_n}(a_n)h+\eta_k$$

where

$$\eta_k \in \mathcal{K}^0_{i_{k+1}} \oplus \bigoplus_{s=k+1}^{n-1} (\mathcal{H}^0_{i_{k+1}} \otimes \cdots \otimes \mathcal{H}^0_{i_s}) \otimes \mathcal{K}^0_{i_s}.$$

we can show this holds for the *k*th term thrown on too. This follows from a quick calculation and the fact that $\rho_{i_k}(a_k)$ is $\Phi_{i_k}(a_k) + (\rho_{i_k}(a_k) - \Phi_{i_k}(a_k))$ as before.

Setting up $M_1 *_N M_2$ Φ_0 is cp - setting up ρ Φ_0 is cp - showing ρ works

Finishing up induction

Finally, since the leftover term is perpendicular to H,

$$\langle \rho(a_1 \dots a_n)h, h' \rangle = \langle \Phi_{i_1}(a_1) \dots \Phi_{i_n}(a_n)h, h' \rangle$$

<ロト < 同ト < 三ト < 三ト

Setting up $M_1 *_N M_2$ Φ_0 is cp - setting up ρ Φ_0 is cp - showing ρ works

Finishing up induction

Finally, since the leftover term is perpendicular to H,

$$\langle \rho(a_1 \dots a_n)h, h' \rangle = \langle \Phi_{i_1}(a_1) \dots \Phi_{i_n}(a_n)h, h' \rangle$$

Note that we can actually get further that $K = \overline{\text{span}} \pi(M)H$ where π is the GNS rep for M into L^2M .

Setting up $M_1 *_N M_2$ Φ_0 is cp - setting up ρ Φ_0 is cp - showing ρ works

Finishing up induction

Finally, since the leftover term is perpendicular to H,

$$\langle \rho(a_1 \dots a_n)h, h' \rangle = \langle \Phi_{i_1}(a_1) \dots \Phi_{i_n}(a_n)h, h' \rangle$$

- Note that we can actually get further that $K = \overline{\text{span}} \pi(M)H$ where π is the GNS rep for M into L^2M .
- To wrap up: since ρ is the Stinespring dilation of Φ₀, we must have that Φ₀ is cp.

Lemma Main theorem

Lemma

Set $X_j^0 = \sum_{k_j \in F_j} a_{j_{k_j}} e_N b_{j_{k_j}} \in N' \cap B(L^2(M_j^0))$ with F_j finite sets and $a_{j_{k_j}}, b_{j_{k_j}} \in M_j$. Then

$$X_{i_{1}}^{0} \otimes \cdots \otimes X_{i_{n}}^{0} = \sum_{j=1}^{n} \sum_{k_{j} \in F_{j}} a_{i_{1}k_{i_{1}}} \dots a_{i_{n}k_{i_{n}}} e_{N} b_{i_{1}k_{i_{n}}} \dots b_{i_{1}k_{i_{1}}} \upharpoonright_{L^{2}(M_{i_{1}}^{0}) \otimes \cdots \otimes L^{2}(M_{i_{n}}^{0})}$$

for all $i_1 \neq \ldots i_n$, $n \geq 1$. This says that (some) tensors of things in $F_N(M)$ will still be in $F_N(M)$, restricted to the right domain.

Lemma Main theorem

... relies on

If
$$a_j \in M_{i_j}$$
 and $b_j \in M_{i_j}^0$ for $1 \le j \le n$, $i_1 \ne \ldots \ne i_n$, then
 $E_N(a_n \ldots a_1 b_1 \ldots b_n) = E_N(a_n \ldots a_2 E_N(a_1 b_1) b_2 \ldots b_n)$

J. Bahr Free products of completely positive maps

Lemma Main theorem

Statement

If $M_1, M_2 \supseteq N$ both have property (H) relative to N, then $M = M_1 *_N M_2$ has property (H) relative to N, with respect to $\tau_{M_1} * \tau_{M_2}$.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Lemma Main theorem

Proof setup

Select Φ_{1,i} and Φ_{2,i} nets of cp maps as in the definition of (H)
 Assume same index set *I* by taking a product net

イロト イボト イヨト イヨト

Lemma Main theorem

Proof setup

Select Φ_{1,i} and Φ_{2,i} nets of cp maps as in the definition of (H)
 Assume same index set *I* by taking a product net
 ||*T*⁰<sub>Φ_{1,i}||, ||*T*⁰<sub>Φ_{2,i}|| can be assumed both strict contractions
</sub></sub>

イロト イボト イヨト イヨト

Lemma Main theorem

Proof setup

Select Φ_{1,i} and Φ_{2,i} nets of cp maps as in the definition of (H)
Assume same index set *I* by taking a product net
|| T⁰_{Φ_{1,i}}||, || T⁰_{Φ_{2,i}}|| can be assumed both strict contractions
max = ρ_i < 1
T = (^I₀ ^T_{Φ⁰}) where L²M_i = L²N ⊕ L²M⁰_i.

Lemma Main theorem

Using the free product of cp maps

Select $\Phi_i = \Phi_{1,i} * \Phi_{2,i}$

<ロト < 同ト < 三ト < 三ト
Lemma Main theorem

Using the free product of cp maps

Select $\Phi_i = \Phi_{1,i} * \Phi_{2,i}$

▶ It's an E_N -preserving, N-bimodular, unital cp map

イロト イボト イヨト イヨト

Lemma Main theorem

Using the free product of cp maps

Select $\Phi_i = \Phi_{1,i} * \Phi_{2,i}$

▶ It's an E_N -preserving, N-bimodular, unital cp map

We can decompose

$$T_{\Phi_i} = T_{\Phi_{1,i}} * T_{\Phi_{2,i}}$$

= $I_{L^2N} \oplus \bigoplus T^0_{\Phi_{j_1,i}} \otimes \cdots \otimes T^0_{\Phi_{j_n,i}}$

J. Bahr Free products of completely positive maps

Lemma Main theorem

Verifying the limit condition

Each ||T_{Φ_i}|| ≤ 1 so we just need to check lim_i ||Φ_i(x) − x||₂ = 0 for x ∈ M on finite sums of reduced words, since the tail will be irrelevant

イロト イボト イヨト イヨト

Lemma Main theorem

Verifying the limit condition

- Each ||T_{Φ_i}|| ≤ 1 so we just need to check lim_i ||Φ_i(x) − x||₂ = 0 for x ∈ M on finite sums of reduced words, since the tail will be irrelevant
- Actually, since in L²(M) different type words are orthogonal, just need reduced words x

Lemma Main theorem

Verifying the limit condition

- Each ||T_{Φi}|| ≤ 1 so we just need to check lim_i ||Φ_i(x) − x||₂ = 0 for x ∈ M on finite sums of reduced words, since the tail will be irrelevant
- Actually, since in L²(M) different type words are orthogonal, just need reduced words x
- But remember for reduced words a₁...a_n, Φ_i is the product of the Φ_{j,i}'s

Lemma Main theorem

Verifying $T_{\Phi_i} \in \mathcal{K}_N(M)$

Fix *i*, and just write $T_j = T_{\Phi_{j,i}}$.

Lemma Main theorem

Verifying $T_{\Phi_i} \in \mathcal{K}_N(M)$

Fix *i*, and just write $T_j = T_{\Phi_{j,i}}$. Fix $0 < \varepsilon < 1 - \rho_i$.

J. Bahr Free products of completely positive maps

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Lemma Main theorem

Verifying $T_{\Phi_i} \in \mathcal{K}_N(M)$

Fix *i*, and just write $T_j = T_{\Phi_{j,i}}$. Fix $0 < \varepsilon < 1 - \rho_i$. Since $T_j \in \mathcal{K}_N(M_j)$,

イロト イボト イヨト イヨト

Lemma Main theorem

Verifying $T_{\Phi_i} \in \mathcal{K}_N(M)$

Fix *i*, and just write $T_j = T_{\Phi_{j,i}}$. Fix $0 < \varepsilon < 1 - \rho_i$. Since $T_j \in \mathcal{K}_N(M_j)$, pick $X_j \in F_N(M_j)$ with $||T_j - X_j|| \le \varepsilon$

Lemma Main theorem

Verifying $T_{\Phi_i} \in \mathcal{K}_N(M)$

Fix *i*, and just write $T_j = T_{\Phi_{j,i}}$. Fix $0 < \varepsilon < 1 - \rho_i$. Since $T_j \in \mathcal{K}_N(M_j)$, pick $X_j \in F_N(M_j)$ with $||T_j - X_j|| \le \varepsilon$ $|| \text{ note } ||X_j|| < 1$

Lemma Main theorem

Verifying $T_{\Phi_i} \in \mathcal{K}_N(M)$

Fix *i*, and just write $T_j = T_{\Phi_{j,i}}$. Fix $0 < \varepsilon < 1 - \rho_i$. Since $T_j \in \mathcal{K}_N(M_j)$, pick $X_j \in F_N(M_j)$ with $||T_j - X_j|| \le \varepsilon$ $|| \text{ note } ||X_j|| < 1$ Denote

$$X_j^0 = (1 - e_N)X_j(1 - e_N).$$

This is consistent notation! X_j^0 acts on $L^2(M_j^0)$, still is a strict contraction, and is still ε close to T_i^0 .

Lemma Main theorem

Verifying $T_{\Phi_i} \in \mathcal{K}_N(M)$, calculation

$$\begin{split} \| T_{k_1}^0 \otimes \cdots \otimes T_{k_n}^0 - X_{k_1}^0 \otimes \cdots \otimes X_{k_n}^0 \| &\leq \| T_{k_1}^0 - X_{k_1}^0 \| \| T_{k_2}^0 \| \dots \| T_{k_n}^0 \| \\ &+ \| X_{k_1}^0 \| \| T_{k_2}^0 - X_{k_2}^0 \| \| T_{k_3}^0 \| \dots \| T_{k_n}^0 \| \\ &+ \dots \\ &+ \| X_{k_1}^0 \| \dots \| X_{k_{n-1}}^0 \| \| T_{k_n}^0 - X_{k_n}^0 \| \end{split}$$

by the triangle inequality.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Lemma Main theorem

Verifying $T_{\Phi_i} \in \mathcal{K}_N(M)$, calculation

$$\begin{split} \| T_{k_1}^0 \otimes \cdots \otimes T_{k_n}^0 - X_{k_1}^0 \otimes \cdots \otimes X_{k_n}^0 \| &\leq \| T_{k_1}^0 - X_{k_1}^0 \| \| T_{k_2}^0 \| \dots \| T_{k_n}^0 \| \\ &+ \| X_{k_1}^0 \| \| T_{k_2}^0 - X_{k_2}^0 \| \| T_{k_3}^0 \| \dots \| T_{k_n}^0 \| \\ &+ \dots \\ &+ \| X_{k_1}^0 \| \dots \| X_{k_{n-1}}^0 \| \| T_{k_n}^0 - X_{k_n}^0 \| \end{split}$$

by the triangle inequality.

► X^{0} 's are contractions, so this is bounded by $\varepsilon(\rho_i^{n-1} + \cdots + \rho_i + 1) \le \varepsilon/(1 - \rho_i)$ (also < 1).

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Basics Defining the free product Lemma Main result Main theorem References

Wrapping up

Lemma: since the X⁰'s are in N' ∩ L²(M⁰_j), taking all terms up to order m gives us

$$I_{L^2N} \oplus \bigoplus_{n \leq m, k_1 \neq \ldots \neq k_n} X^0_{k_1} \otimes \cdots \otimes X^0_{k_n} \in F_N(M)$$

J. Bahr Free products of completely positive maps

イロト イボト イヨト イヨト

Basics Defining the free product Lemma Main result Main theorem References

Wrapping up

Lemma: since the X⁰'s are in N' ∩ L²(M⁰_j), taking all terms up to order m gives us

$$I_{L^2N} \oplus \bigoplus_{n \leq m, k_1 \neq \ldots \neq k_n} X^0_{k_1} \otimes \cdots \otimes X^0_{k_n} \in F_N(M)$$

Since T_{Φ_i} is approximated in norm by members of F_N(M), it must be in K_N(M), and the second condition is met.

イロト イボト イヨト イヨト

Basics Defining the free product Lemma Main result Main theorem References

Wrapping up

Lemma: since the X⁰'s are in N' ∩ L²(M⁰_j), taking all terms up to order m gives us

$$I_{L^2N} \oplus \bigoplus_{n \leq m, k_1 \neq \ldots \neq k_n} X^0_{k_1} \otimes \cdots \otimes X^0_{k_n} \in F_N(M)$$

- Since T_{Φ_i} is approximated in norm by members of $F_N(M)$, it must be in $\mathcal{K}_N(M)$, and the second condition is met.
- Thus *M* has property (H) relative to *N* and the witnessing cp maps are the free products with amalgamations of the cp maps for *M*₁ and *M*₂.

References

References

 Florin Boca. "On the method of constructing irreducible finite index subfactors of Popa." Pacific J. Math. 161 (2) 201 - 231, 1993. Link

It's basically just section 3 up to proposition 3.9

 Florin Boca. "Completely positive maps on amalgamated product C*-algebras." Math. Scandinavica. 72, 212-222, 1993. Link

 \blacktriangleright This contains the proof that Φ_0 is cp and can be extended to Φ

イロト イボト イヨト イヨト