
GEOMETRY TOPICS TO KNOW OR LOOK UP

JACKSON BAHR

DIFFERENTIAL TOPOLOGY

(1) Submersions, immersions, embeddings, and local submersion/immersion the-
orems about coordinates

Locally, immersions (d f injective) look like the canonical immersion a 7→
(a, 0). Proof: for a function f , let it be д in local coordinates, so that dд =

( I
0
)

up to change of basis. ThenG(x, z) = д(x)+ (0, z) has identity as its differential.
Apply inverse function theorem.

Similarly, local submersions use inverse function theorem with the helper
function G(a) = (д(a),ak+1, . . . ,an).

Embeddings are topological embeddings (homeo onto image) which are
also injective immersions. A stricter condition which is used more often is
proper (f −1(K) is compact) injective immersion.

(2) Sard’s Theorem
Almost every value is regular. The benefit being that the preimage of a

regular value of f : X → Y is a manifold of dimension dimX − dimY .
(3) Covering map and how to show. A covering map is a map where the stack of

records theorem holds: i.e., for f : X → Y , for any y ∈ Y , there exists V 3 y
neighborhood such that for each x ∈ f −1(y), there exists Ux 3 x diffeomorphic
to V via f . (Alternatively, homeomorphic).

A fiber bundle with discrete fiber is exactly a coveringmap, so if f is a proper
submersion on a connected space between equidimensional manifolds, it is (by
Ehresmann or an easy proof ) a covering map.

(4) Ehresmann’s fibration theorem: a proper submersion over a connected space is
a fiber bundle. The proof sucks.

(5) Intersection number: f t Z implies I (f ,Z ) =
∑

x ∈f −1(Z ) orientation # at x .

orientation # at x =

{
+1 if d fx (TxX ) ⊕ TzZ have positive orientation
−1 otherwise

(a) If X = ∂W and f : X → Y extends toW , then I (f ,Z ) = 0.
(b) I (f ,д) = (−1)dim(X )·dim(Z )I (д, f ).

(6) Transversality theorem. If F : X × S → Y is smooth map (of manifolds!), only
X has boundary, and Z ⊆ Y is a boundaryless submanifold of Y , and F , ∂F t Z ,
then for a.e. s ∈ S , we have both fs , ∂ fs t Z .

(7) Lefschetz fixed point theorem: Let f : X → X be smooth on a compact ori-
entable manifold. If L(f ) , 0, then f has a fixed point.
(a) L(f ) = I (∆, graph(f )) where ∆ is the diagonal.
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(b) L(id) = I (∆,∆) = χ (X ), the Euler characteristic.
(c) A map is called Lefschetz if graph(f ) t ∆. Every map is homotopic to a

Lefschetz map. This means that if x is a fixed point, then d fx does not have
1 as an eigenvalue.

(d) L(f ) =
∑
Lx (f ) for fixed points x where

Lx (f ) =

{
+1 if d fx − I preserves orientation on Tx (X )
−1 if d fx − I reverses orientation

= deg
(
д : z 7→

f (z) − z

| f (z) − z |

)
where the map д : ∂B → Sk−1 on a small ball around the fixed point x .
This definition works regardless of whether or not f is a Lefschetz map.

(8) Extension theorem: Z ⊆ Y a compact submanifold (both ∂Y = ∂Z = �),
f : X → Y , C ⊆ X closed. Suppose f , ∂ f t Z on C and C ∩ ∂X respectively.

Then there is д : X → Y homotopic to f and identical on a neighborhood
of C with д, ∂д t Z everywhere.

You can fix maps while preserving closed sets.
(9) Mod two intersection number and degree, self-intersection, and how to cal-

culate
(10) Z intersection number and degree, self-intersection, and how to calculate
(11) Global flows. These are guaranteed by a compactly supported vector field or a

compact manifold (here global includes existence for all time).
(12) Show that various matrix groups are manifolds.

Handy fact:

d

dt
detA(t) = trace(adj(A(t))

dA(t)

dt
)

Also: det(I + tB) = 1+ t tr(B)+O(t2) because λ eigenvalue of B implies 1+ tλ
an eigenvalue of I + tB.

Better: d detA B = detA tr(A−1B).

d

dt
det(A + tA) = detA

d

dt
(1 + t)n = detA · n , 0

so that for A ∈ SL(n) or A ∈ GL(n), the determinant is a submersion at A.
(13) Show that RPn and CPn are manifolds.

A nice coordinate system is given onU = {x0 , 0} by [1 : x1 : · · · : xn] →
(x1, . . . , xn). Transitions are smooth.

(14) A manifold as the preimage of a regular value. (Use the canonical form of
submersions). Recall that TxM = kerd fx if x ∈ M = f −1(y).

(15) Applications of partitions of unity (what things can you glue?)
(16) Poincaré-Hopf index theorem (to find the Euler characteristic of the sphere as

well) only works on compact manifolds! Since every non-compact manifold
has a non-vanishing vector field.

(17) Know the stereographic projection for spheres of arbitrary dimension. (not
necessary. The result I had in mind, witness χ (Sn) using a vector field with
Poincare-Hopf, does better with (subtract en/4 and then project back to sphere,
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then take vector in this direction). The actual vector field isn’t bad in (project
on to hyperplane) coordinates, and neither is the diffeomorphism.

(18) Definitions of degree: either the number of pre-images of a regular value
(equidimensional spaces), or the number n such that on top homology the map
between top homologies (both Z assuming compact manifold) is x 7→ nx .

(19) A proper local diffeomorphism from a connected space is a coveringmap (corol-
lary of Ehresmann).

(20) Good counter-examples:
S2 double cover of RP2, but π1(S

2) is zero, while π1(RP
2) is not.

(0, 1) cover (sans a point) of S1 is local diffeo, but not covering map.
(21) A lie group has trivial tangent bundle (by carrying vectors from TeM), so if it’s

compact, Poincare Hopf gives us Euler characteristic zero.
(22) Polar decomposition forGL(n): A = UP whereU is unitary (orthogonal) and P

is positive definite Hermitian (symmetric). Since O(n) is a manifold (compact!)
and the space of positive definite symmetric matrices is linear, the product is a
manifold.

(23) Iwasawa decomposition for SL(n): for SL(n), we can decompose G = KAN
where K = SO(n), A is diagonal matrices whose entries are all positive and
whose determinant is 1, and N is upper triangular matrices with 1s on the
whole diagonal.

(24) Quotient manifold theorem: if G is a Lie group acting smoothly, freely (if
дx = x , then д = e), and properly (f : G × X → X is proper) on a manifold X ,
then G/X is a manifold with dimension dimX − dimG.

Special case, if G is a finite group: then a free action (necessarily smooth
and proper since G is compact) can be quotiented by.

(25) Another version: if X is a set and G acts transitively such that for some point p,
the isotropy group (stabilizier) Gp (Gp = {д | д · p = p}) is closed in G, then X
has a unique smooth manifold structure with respect to which the given action
is smooth. Then dimX = dimG − dimGp .

As an example, let X be the set of k-dim subspaces of Rn . Then GL(n)
acts transitively on this space. Also the stabilizer / isotropy group of Rk ⊆ Rn

is the set of matrices of the form
( A B

0 D
)
where A,D are invertible, and B is

any matrix. This set is closed in GL(n), so X is a manifold with dimension
dim GL(n) − dim stabilizer.

(26) Grassmannian manifold (standard method): given subspace P of dimension k,
for subspace V which intersects P⊥ trivially, we write V = Γ(X ) = {v +Xv} for
X : P → P⊥. Then Γ−1 gives a local Euclideanization (viewing linear maps as a
Euclidean space). Consider P, P ′. Let πP , πP ′ be projections. Let IX : P → Rn

be IX (v) = v + Xv.
For S a subspace intersecting P⊥ trivially, write X ′ = (πP ′⊥�S ) ◦ (πP ′�S )−1.

Informally, given S , we get the linear map by (inverse) projecting down to P
then projecting across to P⊥.

To get X back, we write restriction to S as composition with IX (whose
image is S). Then X ′ depends smoothly on X .

(27) The space of lines in R2 is a line bundle over S1 (the angle of the line) which is
not trivial, so it’s the Mobius bundle.
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(28) Let X = f −1(0) be the pre-image of a regular value of f : Rn → R. (Might
need compactness of X ). Then ∇f defines a normal vector field on X . Claim:
X × S1 is parallelizable. Vector fields:

vi (x, θ ) = (πTxX ei ,n · ei )

where TS1 ' S1 × R, but anything with a trivial bundle would work there.
Linear independence is (more or less) easy.

(29) Borsuk Ulam Theorem:
(a) f : Sn → Rn continuous implies there exists x such that f (−x) = f (x).
(b) f : Sn → Rn continuous and odd implies there exists a zero.
(c) Corollary: Ham Sandwich. Pick translation of hyperplane to bisect the

first set, then apply Borsuk Ulam to (vector 7→ volume in front of hyper-
plane for remaining sets).

(d) f : Sn → Rn+1 \ {0} continuous and odd impliesW2(f , 0) = 1.
(30) Whitney immersion, embedding theorems.

(a) Every compact manifold can be embedded in RN for some N . Look
at finitely many charts ϕi with partition of unity βi and then f (p) =
(β1ϕ1(p), . . . , βkϕk (p), β1(p), . . . , βk (p)).

(b) Any n-fold can be immersed (not necessarily injectively) inR2n . Consider
F (x,v) = d fxv. Then F : TM → RN , and Sard’s theorem and dimension
counting tells us that almost every value is not in the image. Take w not
in the image. You can then project to w⊥.

(c) We can injective immerse into R2n+1 by considering also H (x,y, t) =
t(f (x) − f (y)). Then a common regular value w is such that if we project
to w⊥, we stay an immersion, and furthermore, stay injective (since w is
not in the image).

(31) Existence of a proper map. Cover X with charts ϕi with compact support.
Write f =

∑
iϕi .

(32) Why is graph(|x |) not a smooth submanifold of R2?
Let f : U → R2 be a chart about the origin such that f takes the graph to

the x-axis.. Then f is a diffeomorphism, so in particular, ∇f1,∇f2 , 0. But
note that at the origin, ∇f2 · (1, 1) = 0 and ∇f2 · (−1, 1) = 0, so ∇f2 = 0. This is
a contradiction!

DIFFERENTIAL GEOMETRY

(1) Lie bracket and Lie derivatives (with the flow interpretation)
(a) We have LX f = X f

(b) We define (LXω)(p) = limh→0
ϕ∗hω(p)−ω(p)

h .
(c) We define (LXY )(p) = limh→0

Y (p)−(ϕh )∗Y (p)
h . Keep in mind the order!
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(2) Lie derivatives in coordinates. Let (x,U ) be a coordinate system on M and
suppose X =

∑
ai ∂

∂x i .

LX (dx
i ) =

∑ ∂ai

∂x j
dx j

0 = LX
(
δ ij

)
= LX

(
dx i

∂

∂x j

)
= (LXdx

i )

(
∂

∂x j

)
+ dx i

(
LX
∂

∂x j

)
LX
∂

∂x j
= −

∑ ∂ai

∂x j
∂

∂x i

Conclusion:

LXY = XY − YX

=
∑
j

(∑
i

ai
∂b j

∂x i
− bi
∂aj

∂xi

)
∂

∂x j

where X = aiX i and Y = biX i .
Also note that LY (S ⊗ T ) = (LYS) ⊗ T + S ⊗ (LYT ) for a vector field Y .
Another property:

LX (T (Y1, . . . ,Yn)) = (LXT )(Y1, . . . ,Yn) +T ((LXY1), . . . ,Yn) + · · · +T (Y1, . . . , (LXYn))

(3) Writing a vector field in coordinates (it’s X =
∑
ai ∂

∂x i and then application of
a function becomes X (f ) =

∑
ai

∂f
∂x i )

(4) Exterior derivative in coordinates and other formulae for it.
For a form ω = дIdx

i1 ∧ · · · ∧ dx ip , we have

dω = dдI ∧ dx
i1 ∧ · · · ∧ dx ip

(5) If [X ,Y ] = 0, then the flows commute for all time.
(6) Frobenius Theorem and equivalent statements about differential forms and

wedges
Vector field facts: If X1, . . . ,Xk are linearly independent around p and

their commutators vanish, then there is a coordinate system (x,U ) around p

such that Xα = ∂
∂xα for α = 1, . . . ,k.

To prove this, look at flows ϕαt for Xα . Make sure Xα (0) = ∂
∂tα at the origin.

Then define

χ (a1, . . . ,an) = ϕ1
a1 (ϕ

2
a2 (, . . . , (ϕ

k
ak (0, 0, . . . , 0,a

k+1, . . . ,an)) . . . )).

Using x = χ−1 as coordinates, we get that X1 =
∂

∂x1 . Commutativity lets us
interchange the order of flows, since they commute.

For a 1-form ω on a (≥ 3)-manifold, kerω is integrable iff ω ∧ dω = 0.
Proof: use dI (∆) ⊆ I (∆) for one direction and dω(x,y) = ω(x) −ω(y) −ω([x,y])
for the other direction with x,y ∈ kerω =⇒ [x,y] ∈ kerω. This holds for
a 1-form on any manifold (of dimension 3 or higher) with roughly the same
proof.

(7) Boundary orientation {n,v1, . . . ,vk−1} is oriented inM iff {v1, . . . ,vk−1} is ori-
ented in ∂M . Outward normal first!
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(8) Stokes’ Theorem and its classical interpretations.∫
∂M

ω =

∫
M
dω

where
∫
∂M ω is done by taking i : ∂M → M and then integrating i∗ω. We

define the orientation for ∂M by putting the outward normal first.
Interpretations include divergence theorem (

∫
∂M V · nds =

∫
M divV d vol)

and Stokes theorem (classical)
∫
γ v ·Tdt =

∫
S curlv · ds.

For the divergence theorem, we define ω = V1(dx
2 ∧ · · · ∧ dxn) +V2(dx

1 ∧

dx3 ∧ · · · ∧dxn)+ . . . . Then dω = divV dvol. We note that i∗
∂M (inω) = n ·Vds,

where ds is the area form, and n is the outward normal. This is by writing
locally dvol = dn ∧ ds where here n is a function.

(9) Cartan Magic Formula with proof
The formula is LXω = iXdω + d(iXω). Proof: for 0-forms it’s trivial. Induct.

ω =
∑

fIdx
i1 ∧ · · · ∧ dx ik

= d(x i1 ) ∧ fIdx
i2 ∧ · · · ∧ dx ik

= da ∧ b

Calculate both sides, and using product rule, linearity, things work out.
(10) The form dz − ydx has nowhere integrable kernel.
(11) dω(x,y) = ω(x) − ω(y) − ω([x,y]) for a 1-form ω.
(12) If f ' д : M → N are homotopic, then f ∗ω and д∗ω are cohomologous if ω is

closed.
Let F : M × [0, 1] → N be such that F0 = f and F1 = д. Then

(f∗ − д∗)(ω) =

∫ 1

0
L ∂

∂t
ω

=

∫ 1

0
itdω + ditω

=

(∫ 1

0
it ·

)
◦ d(ω) + d ◦

(∫ 1

0
it ·

)
ω

= hdω + dhω

= d(hω)

Thus f ∗ω and д∗ω differ by a closed form.
(13) Poincaré Duality: for a connected oriented n-dim manifold (“of finite type”),

the map PD : Hk (M) → Hn−k
c (M)∗ is an isomorphism for all k. The map is

given by

PD(ω)(α) =

∫
ω ^ α

since Hn
c (M) is R via the isomorphism given by integration.

In particular, if M is compact, Hk → Hn−k (M)∗ is an iso.
(14) de Rham’s theorem: we know that Hk (M ;R) ' Hom(Hk (M ;R);R), but in fact

for α : ∆k → M a chain we can integrate a differential form on it (wlog it’s
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smooth (up to homotopy)), and so we have an isomorphism of vector spaces
(from de Rham cohomology to singular):

ω 7→ (α 7→

∫
α
ω)

where the image of ω is considered an element of Hk in singular cohomology.
De Rham’s theorem is the statement that this is an isomorphism of vector spaces
(so singular and de rham cohomology are the same).

(15) Poincaré lemma. This is the lemma that says on a contractible space, closed and
exact forms are the same.

(16) A closed form is exact on a sphere if and only if the integral is zero, since∫
· : H top → R is an isomorphism by Poincaré duality.

(17) a chain homotopy: a map h : An−1 → Bn such that hd + dh = f − д (where f ,д
are maps from the A chain complex to the B chain complex).

(18) Thom Class: Let M be a compact connected oriented manifold, π : E → M
an oriented k-dim vector bundle with orientation ν . Then the Thom class U
is the unique element of Hk

c (E) with the property that for all p ∈ M , we have
j∗pU = νp , i.e. ∫

Fp ,νp
j∗pω = 1

whereU is the class of the closed form ω and jp : Fp → E is the inclusion of the
fiber into the space.

Alternatively: it’s the U such that π ∗µ ^ U = µ ⊕ ν ∈ Hn+k
c (E), where µ is

the top class on M (basically the orientation).

ALGEBRAIC TOPOLOGY

(1) Smash, join, wedge sum, connect sum
(a) Wedge: A ∨ B where A is pointed with p and B pointed with q is

A ∨ B = ({p} × B) ∪ (A × {q}) ⊆ A × B

(b) Join: X ∗ Y is

X ∗ Y = X × Y × I/∼

where (x,y1, 0) ∼ (x,y2, 0) and (x1,y, 1) ∼ (x2,y, 1), so it collapses X × Y ×
{0} to X and on the other end to Y .

(c) Smash: X ∧ Y = X × Y/X ∨ Y .
(d) Connect sum: remove disks from X and Y and glue along a map from

Sk → Sk . Note that every compact surface is the connect sum of spheres,
projective planes, and tori (uniquely (except for the sphere)).

(2) Homotopy extension property for a pair (X ,A) is: given a map f0 : X → Y then
an agreeing homotopy ft : A → Y extends to a homotopy ft : X → Y . This
holds for a CW pair.

(3) A space is contractible iff every map into it is nullhomotopic iff every map out
of it is nullhomotopic.

(4) Given (X ,A) where X retracts to A, the map induced by the inclusion on
π1(A) → π1(X ) is injective. (Corollary: Brouwer Fixed Point).
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(5) Van Kampen: if X is the union of path-connected open sets Aα each con-
taining the same basepoint, and if each intersection is path-connected, then
ϕ : ∗απ1(Aα ) → π1(X ) is surjective.

If each triple intersection is path-connected, then we know the kernel and
get an isomorphism

π1(X ) ' ∗απ1(Aα )/N

withN = 〈iα β (ω)iβα (ω)−1〉.
Basically, make equivalent the different ways of including things from in-

tersections into the Aα and Aβ .
(6) For cell complexes, π1 is generated by the 1-cells and quotiented by rela-

tions generated by considering each boundary of each 2-cell. For instance,
the torus has a cell complex structure given by one vertex v, two loops a,b,
and a two-cell f attached by taking a,b,a−1,b−1 to be its boundary. Then
π1(T

2) = 〈a,b | [a,b]〉.
(7) Covering spaces and π1.

A covering map is p : X̃ → X such that there’s an open cover {Uα } of X with
p−1(Uα ) a disjoint union of open sets, homeomorphic via p to Uα . NB: p need
not be surjective.

Fact: the induced map p∗ : π1(X̃ ) → π1(X ) is always injective.
Changing the basepoint selection for X̃ produces a subgroup conjugate to

p∗(π1(X̃ )) in π1(X ), with conjugating element represented by the projection of
the path from old basepoint x̃0 to new basepoint x̃1.

In this way, there is a 1-1 correspondence between covering spaces p :
(X̃ , x̃0) → (X , x0) and actual subgroups of π1(X , x0). By forgetting basepoints,
we get a 1-1 correspondance between covering spaces p : X̃ → X and conju-
gacy classes of subgroups of π1(X ).

(8) Universal cover: the covering space corresponding to the trivial subgroup of
π1(X ).

(9) Lifting of maps: given p : X̃ → X , a homotopy ft : Y → X , and a map
f̃0 : Y → X̃ lifting f0, there exists a unique homotopy f̃t lifting f0.

(10) The number of sheets of a covering space (if both X and X̃ are path connected)
is the index of p∗(π1(X̃ )) in π1(X ).

(11) Path lifting criterion: A lift exists iff f∗(π1(Y )) ⊆ p∗(π1(X̃ )).
(12) Unique lifting property: given two lifts f̃1, f̃2 : Y → X̃ of f : Y → X , if Y is

connected and the lifts agree at a point, then they agree everywhere.
(13) Isomorphisms of a covering map X̃ → X̃ are called deck transformations. They

form a groupG(X̃ ). A covering space is normal (or regular) if for every x̃, x̃ ′ above
every x , ∃д ∈ G . дx̃ = x̃ ′.

A covering space is normal iff the subgroup it corresponds to is normal.

G(X̃ ) � N (H )/H

where H is the subgroup p∗(π1(X̃ )), and N (H ) is the normalizer of H in π1(X ).
Reminder: NG (S) = {д ∈ G | дS = Sд} is the normalizer of S in G .

(14) For an entirely discontinuous (here, preimages of open sets are disjoint) action
ofG onY , we get a normal covering spaceY → Y/G whose deck transformation
group is G. Also G � π1(Y/G)/p∗(π1(Y )) if Y is path-con and locally path-con.
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(15) The action of the deck transformation group is not the same as the action of
π1(X ) via lifting loops. One is a right action and the other is a left action.

(16) Fundamental group facts
(a) π1(X × Y ) = π1(X ) × π1(Y ) when X ,Y are path connected.

(17) Fundamental group of complement of linked circles: the complement defor-
mation retracts to S2 ∨T 2.

(18) (X ,A) is a good pair if a neighborhood of A deformation retracts to A.
(19) Various long exact sequences

(a) X is a space and A a non-empty closed subspace with (X ,A) a good pair
(i.e., a neighborhood of A def rets to A.). Then

· · · → H̃n(A)
i∗
−→ H̃n(X )

j∗
−→ H̃n(X/A)

∂
−→ · · · → H̃0(X/A) → 0

where i is the inclusion, j the quotient map, and ∂ the map induced by the
snake lemma.

(b) For a pair (X ,A) we have the relative homology long exact sequence

· · · → Hn(A) → Hn(X ) → Hn(X ,A) → Hn−1(A) → · · · → H0(X ,A) → 0

The map ∂ takes a class α (represented by a chain x) in Hn(X ,A). We view
x as a chain on X (unique up to a boundary), and then take the boundary
∂x which defines a class in Hn−1(A). It’s diagram chasing.
A better description: let [α] ∈ Hn(X ,A) be a class represented by a relative
cycle. Then ∂[α] is the class of a cycle ∂α in Hn−1(A). Note that a relative
cycle is an element of the quotient Ck (X )/Ck (A).

(c) A triple (X ,A,B) yields the SES

0→ Cn(A,B) → Cn(X ,B) → Cn(X ,A) → 0

and hence the LES

· · · → Hn(A,B) → Hn(X ,B) → Hn(X ,A) → · · · → H0(X ,A) → 0

(d)
(20) Excision Theorem: Given Z ⊆ A ⊆ X such that Z̄ ⊆ A◦, then (X \ Z ,A \ Z ) ↪→

(X ,A) induces isomorphisms on all homology.
(21) Five lemma: for A → B → · · · → E forming a rectangle with A′ → B′ →

· · · → E ′, if the two rows are exact, and all but the center are isomorphisms,
then the center is an isomorphism too. Label the descending maps α, β,γ , δ , ε.
This follows then by the Four Lemma: if β, δ surjective and ε injective, then γ
is surjective. (And the whole thing dualized, too.)

(22) Suspension preserves degree: deg S f = deg f where S f is the induced map on
suspension.

(23) χ (X ) =
∑

n(−1)n rankHn(X )
(24) χ (RP2) = 1 (half of the corresponding sphere (0 or 2 depending on parity of

dimension)).
(25) Relative homology: Given A ⊆ X , we get i : A → X inducing Cp (A) →

Cp (X ), so we can quotient, and get Cp (X ,A) = Cp (X )/Cp (A). We get a chain
complex by the boundary map onC(X ) (ends up being well defined). Can take
homology. SES of chains gives us LES on homology (snake lemma).

(26) Snake lemma: SES yields LES with diagram chasing.
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(27) Mayer-Vietoris: for a pair (X ,A)

· · · → Hn(A ∩ B) → Hn(A) ⊕ Hn(B) → Hn(X ) → · · · → H0(X ) → 0

Here, the first map is induced by (x,−x) and the second map by (x,y) 7→
(x + y). The boundary map takes α ∈ Hn(X ) represented by a cycle z and by
choosing z = x + y a sum of chains in A and B, we get that ∂x = −∂y (since
∂(x + y) = 0), so ∂α ∈ Hn−1(A ∩ B) is represented by ∂x = −∂y.

(28) Boundary map on product of CW complexes (how to calculate)

d(e f ) = d(e)f + (−1)dimension of cell eed(f )

(29) Cell decompositions of all surfaces:
(a) Sphere: e2 attached via the constant map to e0.
(b) Genus д surface: take a 4д-gon, and label the edges a,b, ā, b̄, c,d, c̄, d̄, . . . .

Attach the single two-cell.
(c) RP2: square with all opposite sides identified opposite-wise.
(d) Klein bottle: Mobius strip turned into a cylinder.
(e) Surface with д copies of RP2 connect summed together (crosscap number

д) has a 4д-gon with edges labelled a,a,b,b, c, c,d,d, . . . .
(30) Mapping torus example: let f ,д : X → Y and define Z = X × I t Y/∼ where

(x, 0) ∼ f (x) ∈ Y

(x, 1) ∼ д(x) ∈ Y

Consider q : (X × I ,X × ∂I ) → (Z ,Y ) the restriction to X × I of the quotient
map X × I tY → Z . We get an induced map on long exact sequences of relative
homology.

Top row: → Hn+1(X × I ,X × ∂I ) → Hn(X × ∂I ) → Hn(X × I ) → . . . .
Note that the third map is surjective, so the first and last maps are zero. Thus

the second map is injective. Since the middle thing is Hn(X ) ⊕ Hn(X ), and the
last thing is Hn(X ), this means that the first group is also Hn(X ).

Bottom row: → Hn+1(Y ,Z ) → Hn(Y ) → Hn(Z ) → . . . .
Since q is a homeomorphism from (X × I ,X × ∂I ) → (Z ,Y ), the q∗ from

Hn+1(X × I ,X × ∂I ) → Hn+1(Y ,Z ) is an isomorphism.
The result is

· · · → Hn(X )
f∗−д∗
−−−−→ Hn(Y )

i∗
−→ Hn(Z ) → Hn−1(X ) → . . .

(31) The mapping torus: if X = Y and f = id : X → X , then Z is the mapping torus.
We get the exact sequence

· · · → Hn(X )
id−д∗
−−−−→ Hn(X )

i∗
−→ Hn(Z ) → . . .

(32) The nth Betti number is defined to be the rank of Hn .
(33) Compute relative (cellular) homology
(34) Homology of CPn is alternating 0,Z (starting at Z naturally), since one cell in

each even dimension.
(35) Homology of common spaces:

(a) H∗(CP
n ;Z) is 0,Z, 0,Z, . . . . This is because it’s equal to the cellular chain

complex.
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(b) H∗(RP
n ;Z) is Z,Z2, 0,Z2, . . . and ends on Z if n odd and 0 otherwise

(consider orientability).
(c) H∗(RP

n ;Z2) is Z2 across the board.
(d) H∗(S

n ;Z) is Z in 0 and n.
(e) H∗(T

2;Z) is Z,Z2,Z.
(f ) H∗(Σд ;Z)where Σд is the surface of genusд isZ,Z2д,Z (so χ (Σд) = 2−2д).
(g) H∗(K ;Z) is Z,Z ⊕ Z2, 0 in increasing order (using the mapping torus se-

quence with д equal to the antipodal map, or glue two Möbius strips and
apply Mayer-Vietoris.

(h) Hk ((S
1)n ;Z) = Z(

n
k). This follows from the Kunneth formula for homol-

ogy (which is complicated), or complicated cellular homology calculation.
If you want it withR coefficients, use UCT and Kunneth on cohomology.

(i) H∗(M) = H∗(S
1) since theMöbius band deformation retracts to the (center)

circle.
(36) Universal Coefficient Theorem for homology: if the chain group consists of

free abelian groups, then the following are (not-naturally) split exact sequences.

0→ Hn(C) ⊗ G → Hn(C;G) → Tor(Hn−1(C),G) → 0

where
(a) Tor(A,B) = Tor(B,A)
(b) Tor(⊕iAi ,B) = ⊕i Tor(Ai ,B)
(c) Tor(A,B) = 0 if either are free (or torsionfree more generally).
(d) Tor(A,B) = Tor(T (A),B) where T (A) is the torsion subgroup.
(e) Tor(Zn,A) = ker(A

n
−→ A)

(37) Universal Coefficient Theorem for cohomology: The following is a split exact
sequence.

0→ Ext(Hn−1(C),G) → Hn(C;G) → Hom(Hn(C),G) → 0

Facts about the Ext groups:
(a) Ext(H ⊗ H ′,G) = Ext(H ,G) ⊗ Ext(H ′,G)
(b) Ext(H ,G) = 0 if H is free.
(c) Ext(Zn,G) = G/nG.
so in particular, for G = R or really any field, the Ext groups are trivial, so
Hn = Hom(Hn).

Corollary: if Hn,Hn−1 are finitely generated with torsion Tn−1,Tn , then

Hn(C;Z) � (Hn/Tn) ⊕ Tn−1

so for Z coefficients, torsion moves up.
Useful commutative diagram: top row: 0→ Ext(Hn−1(C),G) → Hn(C;G) →

Hom(Hn(C),G) → 0. Bottom row hasC ′. Vertical maps are (α∗)∗, α∗, and (α∗)∗.
In particular, if Ext is trivial, then the map on cohomology is the dual of the
map on homology.

(38) Mayer-Vietoris for cohomology:
(a) Absolute Mayer-Vietoris

· · · → Hn(X ;G) → Hn(A;G) ⊕ Hn(B;G) → Hn(A ∩ B;G) → Hn+1(X ;G) → . . .
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(b) Relative Mayer-Vietoris

· · · → Hn(X ;Y ) → Hn(A,C) ⊕ Hn(B,D) → Hn(A ∩ B,C ∩ D) → . . .

where X ,Y ) = (A ∪ B,C ∪ D) with C ⊆ A, and D ⊆ B such that X is the
union of the interiors of A,B and Y the union of the interiors C,D.

(39) Cohomology Rings:
(a) H ∗(RPn ;Z2) = Z2[α]/(α

n+1) where |α | = 1
(b) H ∗(RP∞;Z2) = Z2[α] where |α | = 1
(c) H ∗(RP2k ;Z) = Z[α]/(2α,αk+1) where |α | = 2
(d) H ∗(RP2k+1;Z) = Z[α, β], (2α,ak+1, β2,αβ) where |α | = 2, |β | = 2k + 1.
(e) H ∗(CPn ;Z) = Z[α]/(αn+1) where |α | = 2
(f ) H ∗(CP∞;Z) = Z[α] where |α | = 2.
(g) H ∗(HPn ;Z) = Z[α]/(αn+1) where |α | = 4
(h) H ∗(HP∞;Z) = Z[α] where |α | = 4.
(i) H ∗(T n ;Z) = ΛZ[α1, . . . ,αn] with the monomial αi1 . . . αik corresponding

to the cell e1
i1 × . . . × e

1
ik .

(j) H ∗(Sk ;Z) is eitherΛ[α] orZ[α]/(α2). These are isomorphic as rings, but in
the graded sense their tensors differ. The former case happens if k is odd,
and the latter if k is even, and α has odd or even grading correspondingly.

(k) H ∗(Sk1 × . . .×Skn ;Z) = Λz [α1, . . . ,αn] if each ki is odd, since Λ[α1, . . . ,αn]
is the tensor of Λ[αi ]. Similarly it becomes Z[α1, . . . ,αn]/(α

2
1, . . . ,α

2
n) if

each ki is even.
(l) H ∗(X ;Zp ) = H ∗(X ;Z) ⊗ Zp as rings if Hn(X ;Z) is finitely generated and

free for each n.
(40) Kunneth Formula

H ∗(X ;R) ⊗R H ∗(Y ;R) → H ∗(X × Y ;R)

is an isomorphism of rings if X ,Y are CW complexes and Hk (Y ;R) is finitely
generated and free for all k.

(41) Facts about tensors of graded rings:
(a) In general, R[α1, . . . ,αm] ⊗ R[β1, . . . , βn] is R[α1, . . . ,αm, β1, . . . , βn].
(b) Rm ⊗ Rn = Rmn (in particular, R ⊗ 0 = 0)
(c) Zm ⊗ Zn = Zgcd(m,n).
(d) To find the specific groups:

Hn(X × Y ) =
⊕
i+j=n

Hi (X ) ⊗ Hj (Y )

(42) If M is a compact connected n-manifold, then Hn−1(M ;Z) has no torsion if M
is orientable. Otherwise has Z2 torsion if non-orientable.

(43) For M connected non-compact n-fold, Hi = 0 for i > n and i = n.
(44) Poincare duality: for a closed R-orientable n-fold with fundamental class [M] ∈

Hn(M ;R), the map

D : Hk (M ;R) → Hn−k (M ;R)

defined by D(α) = [M] _ α is an isomorphism. Recall that the cap product_
is given by contraction: for σ : ∆p → X a chain and z ∈ Cq(X ;R) a chochain,
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we get
σ _ z = z(σ�[v0, ...,vq ])σ�[vq , ...,vp ]

An alternative version is given in Spivak. Let M be a connected oriented
n-manifold “of finite type”. Then

PD : Hk (M) → Hn−k
c (M)∗

PD(α)(β) = µ(α ∪ β)

is an isomorphism for all k. Here we use R coefficients and µ is integration
against a volume form (with integral 1).

(45) Note: the pairing (α, β) 7→ (α ∪ β)[M] is always a non-degenerate bilinear
pairing for a compact orientable manifold M .

(46) Induced maps on cohomology rings.
(a) All maps from S2 → S1 × S1 have degree zero. On one hand this can be

seen by π1, but also the cohomology ring of T 2 is Z[α, β]/(α2, β2) so the
map on H1 is trivial, and hence the map on cohomology rings is trivial.

(47) Top homology of compact manifold (w/o boundary) is Z, but compact mani-
fold with boundary yields 0.

(48) Odd dimensional compact orientable manifolds have euler characteristic zero.
This is a corollary of Poincare Duality, since the Hk and Hn−k terms cancel in
pairs.

(49) Poincaré Duality tricks: let M be a compact (4n + 2)-manifold. Show that
H2n+1 is even dimensional (R coefficients). It’s enough to note that_ is a non-
degenerate (by Poincaré Duality, every non-trivial form has another it can cup
with to get 1 in top cohomology) alternating bilinear form. By writing it as
a matrix, we get det(A) = det(A>) = det(−A) = (−1)dimH 2n+1 det(A). Thus it’s
even dimensional.

(50) Nice deformation retractions:
(a) R3 \ (two linked circles) deformation retracts to S2 ∨T 2.
(b) R3 \ (two unlinked circles) deformation retracts to S2 ∨ S1 ∨ S2 ∨ S2.
(c) Rn \ (axes) deformation retracts to Sn−1 \ (2n points) which def retracts to

Dn−1 \ (2n − 1 points) and then
∨

2n−1 S
n−2

(d) R3 \ (circle) deformation retracts to S2 with a diameter, i.e., S2 ∨ S1.
(e) A torus without k points deformation retracts to

∨
k+1 S

1.
Extra Topics
(1) Connect sums: calculation (use Van Kampen or Mayer-Vietoris).
(2) Concrete computation of HdR of S1, and S2 (using Poincaré Lemma).
(3) Homology of CX , SX , ΣX .
(4) More matrix groups and why they’re manifolds: O(n), SL(n),GL(n). Also ma-

trices of rank r .
(5) Proof of the Ehresmann fibration theorem.


